Linear Correlation 11- Calculation of Population Covariance

preview_player
Показать описание
Statistics for all
MBA - MCA - CA - CS - CWA - BBA - BCA - BCom - MCom - GRE - GMAT - Grade 11 - Grade 12 - Class 11 - Class 12 - IAS - CAIIB - FIII - IBPS - BANK PO - UPSC - CPA - CMA - Competitive Exams - Entrance Exams

Linear Correlation (Correlation Analysis - Association between two variables)

Covariance:

Covariance is the mean or expected value of the products of the deviations of the two variables from their means.

Cov(x, y) = E[(X - X(X))(Y - E(Y))]
={[∑(x – Mean) (y – Mean)] / n}

Xi: 8 13 15 17 20 22 24 25
Yi: 25 30 32 30 36 40 42 45

Mean of X = 144 / = 18

Mean of Y = 280 / 8 = 35

∑(x – x) (y – y)] = 273

Population Cov(x, y) = E[(X - E(X))(Y - E(Y))]
={[∑(x – x) (y – y)] / N}
= 273 / 8 = 34.125

Рекомендации по теме
Комментарии
Автор

how to estimate population covariance from sample covariance

gcumauma
Автор

How to know when we have to use population or when to use sample covariance formula ?

rehanhusain
Автор

Respected sir here any rules for capital letters for defining variables and other?

vanshitaamin
join shbcf.ru