cos(x+y) = cosx.cosy - sinx.siny And sin(x+y) = sinx.cosy + cosx.siny

preview_player
Показать описание
AQ^2 = 2 - 2cosxcosy + 2sinxsiny
BP^2 = 2 - 2cos(x + y)
Equating above two equations we shall get the required result.
Second part of the proof can be obtained by using the identity-
sin^(X) + cos^(X) = 1
#cos(x+y)=cosxcosy-sinxsiny #derivationofsin(x+y)=sinxcosy+cosxsiny
Рекомендации по теме
Комментарии
Автор

Please upload more videos on this topic...

simimishra
Автор

Sir this video was very helpful. Please make detailed a series on maths required for physics coz I havent opted for maths🙂

anujeetsaha
welcome to shbcf.ru