filmov
tv
Energy Transition Crisis - Episode 7: Small Modular Nuclear Reactors
Показать описание
Chapters:
00:00 Episode 7: Small Modular Nuclear Reactors
03:19 The Case for Assembly Line Manufacturing
06:57 Not just Small & Modular. Don’t forget Advanced!
11:06 SMRs and Nuclear Weapons Proliferation
13:36 Western SMRs: A nascent industry
15:41 SMR Case Studies
20:06 Our Future
22:29 Energy-as-a-Service is likely to be a trend
As we’ve seen in the last two episodes, there’s a massive disconnect between nuclear energy perception and nuclear energy reality. The public’s perception is that nuclear power is still unsafe, as evidenced by the Fukushima accident. Critics of nuclear power cite core meltdowns, hydrogen explosions, weapons proliferation risks, and nuclear waste disposal as their biggest objections.
In reality, nuclear power is already the safest form of baseload power generation in existence. The coal mining industry has killed 820 times more people than the nuclear power industry.
And all the problems of core meltdowns, hydrogen explosions and nuclear waste disposal were solved decades ago. But those solutions were never adopted and commercialized, thanks to government bureaucracy standing in the way of progress.
So the primary problems the public perceives about nuclear power have already been solved. But that’s not to say nuclear energy is without very real problems! The much less often mentioned problem of cost and schedule overruns on nuclear powerplant construction projects is very real, and it would be foolish to assume we can build 50x more new large-scale nuclear plants between now and 2050 than have ever been built before, and get that done anywhere close to on-time and on-budget. That’s just not realistic.
The solution is to manufacture nuclear reactors on assembly lines, in factories, with state-of-the-art quality control. This formative trend is known as Small Modular Reactors, or SMRs.
And there’s even a ray of hope on the government bureaucracy front: In January 2023, U.S. regulators approved the first SMR design for operation in the United States, in a move that signaled U.S. regulators might finally be coming around and opening their minds to advanced nuclear technology adoption.
A modern automobile would cost at least a million dollars if you had one custom designed and built to your personalized specifications. Custom-building anything using one-at-a-time construction techniques is very expensive. But thanks to the efficiencies of scale inherent to assembly-line manufacturing, our automotive industry produces millions of vehicles at affordable prices.
We need to do the same thing for the nuclear reactor that Henry Ford did for the automobile. Or perhaps a better analogy would be to say that we need to adapt the world-class leadership that both North America and Europe have shown in aircraft manufacturing, and apply that talent to mass-producing civilian nuclear power reactors in factories, just as we mass-produce airliners in factories today, under the tightest safety standards.
The nuclear power industry’s track record for getting large bespoke construction projects done on time and on budget couldn’t be more abysmal. The 2018 bankruptcy of Westinghouse in the wake of cost and schedule overruns at the Vogtle project in Georgia proves this. So, in order for Nuclear to solve the coming energy crisis, we need to take a completely different approach. SMRs eliminate the need for bespoke on-site construction, and could offer the nuclear power industry the same gift of economy of scale that the automobile industry received from Henry Ford’s invention of the assembly line.
Another advantage of SMRs is that they can be designed so that the SMR itself contains all the nuclear waste, meaning that when the building the SMR occupies is demolished someday, the rubble won’t need to be treated as low-level nuclear waste. This difference alone will dramatically reduce the cost of nuclear plant decommissioning, and therefore, reduce the cost of nuclear-generated electricity. It also has the side benefit of centralizing nuclear reactor recycling at the reactor manufacturer’s facilities.
00:00 Episode 7: Small Modular Nuclear Reactors
03:19 The Case for Assembly Line Manufacturing
06:57 Not just Small & Modular. Don’t forget Advanced!
11:06 SMRs and Nuclear Weapons Proliferation
13:36 Western SMRs: A nascent industry
15:41 SMR Case Studies
20:06 Our Future
22:29 Energy-as-a-Service is likely to be a trend
As we’ve seen in the last two episodes, there’s a massive disconnect between nuclear energy perception and nuclear energy reality. The public’s perception is that nuclear power is still unsafe, as evidenced by the Fukushima accident. Critics of nuclear power cite core meltdowns, hydrogen explosions, weapons proliferation risks, and nuclear waste disposal as their biggest objections.
In reality, nuclear power is already the safest form of baseload power generation in existence. The coal mining industry has killed 820 times more people than the nuclear power industry.
And all the problems of core meltdowns, hydrogen explosions and nuclear waste disposal were solved decades ago. But those solutions were never adopted and commercialized, thanks to government bureaucracy standing in the way of progress.
So the primary problems the public perceives about nuclear power have already been solved. But that’s not to say nuclear energy is without very real problems! The much less often mentioned problem of cost and schedule overruns on nuclear powerplant construction projects is very real, and it would be foolish to assume we can build 50x more new large-scale nuclear plants between now and 2050 than have ever been built before, and get that done anywhere close to on-time and on-budget. That’s just not realistic.
The solution is to manufacture nuclear reactors on assembly lines, in factories, with state-of-the-art quality control. This formative trend is known as Small Modular Reactors, or SMRs.
And there’s even a ray of hope on the government bureaucracy front: In January 2023, U.S. regulators approved the first SMR design for operation in the United States, in a move that signaled U.S. regulators might finally be coming around and opening their minds to advanced nuclear technology adoption.
A modern automobile would cost at least a million dollars if you had one custom designed and built to your personalized specifications. Custom-building anything using one-at-a-time construction techniques is very expensive. But thanks to the efficiencies of scale inherent to assembly-line manufacturing, our automotive industry produces millions of vehicles at affordable prices.
We need to do the same thing for the nuclear reactor that Henry Ford did for the automobile. Or perhaps a better analogy would be to say that we need to adapt the world-class leadership that both North America and Europe have shown in aircraft manufacturing, and apply that talent to mass-producing civilian nuclear power reactors in factories, just as we mass-produce airliners in factories today, under the tightest safety standards.
The nuclear power industry’s track record for getting large bespoke construction projects done on time and on budget couldn’t be more abysmal. The 2018 bankruptcy of Westinghouse in the wake of cost and schedule overruns at the Vogtle project in Georgia proves this. So, in order for Nuclear to solve the coming energy crisis, we need to take a completely different approach. SMRs eliminate the need for bespoke on-site construction, and could offer the nuclear power industry the same gift of economy of scale that the automobile industry received from Henry Ford’s invention of the assembly line.
Another advantage of SMRs is that they can be designed so that the SMR itself contains all the nuclear waste, meaning that when the building the SMR occupies is demolished someday, the rubble won’t need to be treated as low-level nuclear waste. This difference alone will dramatically reduce the cost of nuclear plant decommissioning, and therefore, reduce the cost of nuclear-generated electricity. It also has the side benefit of centralizing nuclear reactor recycling at the reactor manufacturer’s facilities.
Комментарии