filmov
tv
Energy Transition Crisis - Episode 4: Deep Geothermal Renewable Energy
Показать описание
Chapters:
00:00 Episode 4: Deep Geothermal Renewable Energy
03:48 Introduction to Deep Geothermal Renewable Energy
17:25 Re-Purposing Technology from the Oil & Gas Industry
28:37 Supercritical Geothermal
34:22 Conclusions
Geothermal renewable energy is currently the least practical and economic of the four primary renewable energy sources. But we’re already on the cusp of making technological advances that could be game-changers. In this episode of Energy Transition Crisis, I’ll show you what it would take for Geothermal to leapfrog Wind, Solar, and Hydropower, to become the very best source of baseload power needed to replace fossil fuels.
To phase out fossil fuels by 2050, we need to build 80k TWh of new clean electric generation capacity. That’s equivalent to 160k TWh of thermal energy. By my calculations, no more than 35% of it could come from wind and solar, and that’s intermittent supply. So to phase out fossil fuels, what’s left to find is the other 65% of baseload supply needed to finish the job. That’s 52k TWh of electricity, or 104k TWh of thermal energy needed to make that electricity.
But our goal shouldn’t just be to replace what we already have. We should strive to make clean energy more abundant than fossil fuel energy is today. For that reason, I prefer to focus on finding a clean source of baseload supply for the full 160k TWh of thermal energy needed to completely replace fossil fuels. That way, if wind and solar fall short of my admittedly very aggressive 35% target by 2050, we’ll still have enough energy. And if wind and solar deliver the full 35% or more, then the extra energy we create will be the icing on the cake that helps usher in a new era of human prosperity just like the steam engine did beginning in the 1770s.
Geothermal renewable energy, at its current state of technological development, is the least promising of the four primary renewable energy sources. So why am I dedicating an entire episode to it? Because we’re on the cusp of making technological breakthroughs in geothermal that could easily be game-changers, leapfrogging Geothermal from last position behind Wind, Solar, and Hyrdropower, and making it the MOST attractive source of renewable energy to supply the 160k TWh of thermal energy needed to completely phase-out fossil fuels by 2050.
Geothermal is less popular and less well understood than other renewables, so let’s start with how it works. There are several different kinds of Geothermal energy, but I’m only going to focus on the one that could be a game changer for Energy Transition, which is Electricity generated from deep Geothermal wells.
If you ask most people what our planet is made of, they’ll probably say dirt, rocks, and the water in our oceans. But these things are just what make up the earth’s crust, which only accounts for 1% of the planet’s overall mass. The crust isn’t very thick—generally no thicker than 100km on land, and even thinner under our deep oceans, where the crust is only 5-7km thick.
It’s another 6,300 km straight down to get to the center of the earth. The next layer below the base of the earth’s crust is the mantle, which is very hot rock, some of it solid and some of it magma, or molten rock, similar to the lava that flows out of erupting volcanoes. Below the mantle are the Earth’s inner and outer core, the center of which is mostly molten iron and other metals.
The deeper you go, the hotter it gets. The earth’s core has a temperature over five thousand degrees Celsius, or almost 10,000 degrees farenheit. The deepest base of the earth’s crust is about 1,000C. Within the earth’s crust, the temperature gets hotter as you go deeper.
A study by the Defense Advanced Research Project Agency concluded that if we could just figure out a way to harness only 1/10th of 1% of the heat in the earth’s mantle, we could meet all our energy needs for millions of years. Put another way, all the energy we could possibly ever need is already right at our feet. Or more precisely, just a few miles straight down below our feet.
At those depths, the heat of Earth’s mantle—or even just the deeper regions of Earth’s crust, offers us all the energy we could possibly need, if only we could figure out how to drill a hole deep enough to access all that heat that’s right there below our feet. The really hot rock that has enough energy to solve all our energy problems is found at less depth below the surface of the earth than our commercial airliners fly above the surface of the earth.
00:00 Episode 4: Deep Geothermal Renewable Energy
03:48 Introduction to Deep Geothermal Renewable Energy
17:25 Re-Purposing Technology from the Oil & Gas Industry
28:37 Supercritical Geothermal
34:22 Conclusions
Geothermal renewable energy is currently the least practical and economic of the four primary renewable energy sources. But we’re already on the cusp of making technological advances that could be game-changers. In this episode of Energy Transition Crisis, I’ll show you what it would take for Geothermal to leapfrog Wind, Solar, and Hydropower, to become the very best source of baseload power needed to replace fossil fuels.
To phase out fossil fuels by 2050, we need to build 80k TWh of new clean electric generation capacity. That’s equivalent to 160k TWh of thermal energy. By my calculations, no more than 35% of it could come from wind and solar, and that’s intermittent supply. So to phase out fossil fuels, what’s left to find is the other 65% of baseload supply needed to finish the job. That’s 52k TWh of electricity, or 104k TWh of thermal energy needed to make that electricity.
But our goal shouldn’t just be to replace what we already have. We should strive to make clean energy more abundant than fossil fuel energy is today. For that reason, I prefer to focus on finding a clean source of baseload supply for the full 160k TWh of thermal energy needed to completely replace fossil fuels. That way, if wind and solar fall short of my admittedly very aggressive 35% target by 2050, we’ll still have enough energy. And if wind and solar deliver the full 35% or more, then the extra energy we create will be the icing on the cake that helps usher in a new era of human prosperity just like the steam engine did beginning in the 1770s.
Geothermal renewable energy, at its current state of technological development, is the least promising of the four primary renewable energy sources. So why am I dedicating an entire episode to it? Because we’re on the cusp of making technological breakthroughs in geothermal that could easily be game-changers, leapfrogging Geothermal from last position behind Wind, Solar, and Hyrdropower, and making it the MOST attractive source of renewable energy to supply the 160k TWh of thermal energy needed to completely phase-out fossil fuels by 2050.
Geothermal is less popular and less well understood than other renewables, so let’s start with how it works. There are several different kinds of Geothermal energy, but I’m only going to focus on the one that could be a game changer for Energy Transition, which is Electricity generated from deep Geothermal wells.
If you ask most people what our planet is made of, they’ll probably say dirt, rocks, and the water in our oceans. But these things are just what make up the earth’s crust, which only accounts for 1% of the planet’s overall mass. The crust isn’t very thick—generally no thicker than 100km on land, and even thinner under our deep oceans, where the crust is only 5-7km thick.
It’s another 6,300 km straight down to get to the center of the earth. The next layer below the base of the earth’s crust is the mantle, which is very hot rock, some of it solid and some of it magma, or molten rock, similar to the lava that flows out of erupting volcanoes. Below the mantle are the Earth’s inner and outer core, the center of which is mostly molten iron and other metals.
The deeper you go, the hotter it gets. The earth’s core has a temperature over five thousand degrees Celsius, or almost 10,000 degrees farenheit. The deepest base of the earth’s crust is about 1,000C. Within the earth’s crust, the temperature gets hotter as you go deeper.
A study by the Defense Advanced Research Project Agency concluded that if we could just figure out a way to harness only 1/10th of 1% of the heat in the earth’s mantle, we could meet all our energy needs for millions of years. Put another way, all the energy we could possibly ever need is already right at our feet. Or more precisely, just a few miles straight down below our feet.
At those depths, the heat of Earth’s mantle—or even just the deeper regions of Earth’s crust, offers us all the energy we could possibly need, if only we could figure out how to drill a hole deep enough to access all that heat that’s right there below our feet. The really hot rock that has enough energy to solve all our energy problems is found at less depth below the surface of the earth than our commercial airliners fly above the surface of the earth.
Комментарии