Can you find area of the Blue Square? | (Justify your answer) | #math #maths | #geometry

preview_player
Показать описание

Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!

Need help with solving this Math Olympiad Question? You're in the right place!

I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at

Can you find area of the Blue Square? | (Justify your answer) | #math #maths | #geometry

Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!

#FindBlueSquareArea #Triangle #SimilarTriangles #Square #GeometryMath #PythagoreanTheorem
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam

How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun

Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
Рекомендации по теме
Комментарии
Автор

Here's another exciting and challenging question ahead.
Thanks professor

zupitoxyt
Автор

By Similarity of ∆CPB and ∆MDC, PC = 4/2=2 and BC² = 20= Area

harikatragadda
Автор

Way too complicated! MDC and BPC are similar, the ratio of the catheti is 1:2, so PC is 2. 4²+2² = 20 = (BC)², which is the area we were searching.

andrepiotrowski
Автор

Use similar triangles to figure out CM=4+4/(2^2)=5 and Blue Square Area BP×CM=4×5=20

FSIec-xx
Автор

There is a faster way to solve this.

Since we know MC= x√5 we can immediately substitute it in the Similarity Formula to get x= √5


(x√5)/2x= 2x/4

√5/2= x/2
x= √5

Since we know that the square's area is 4x²



4(√5)²
4(5)
A= 20 units²

alster
Автор

Similar triangles DMC & PCB.
X / 2X = PC / 4.
PC = 4X / 2X = 2.
CB^2 = 4^2 + PC^2.
CB^2 = 16 + 4 = 20.
CB^2 = area of square.

georgebliss
Автор

Similarity of right triangles:
4/s = s / √[s²+(½s)²]
s² = 4 √[5/4 s²] = 4 √5/2 s
s² = (2√5)² = 20 cm² ( Solved √ )

marioalb
Автор

Let's find the area:
.
..
...
....


First of all we apply the Pythagorean theorem to the right triangle CDM. With s being the side length of the square we obtain:

CM² = CD² + DM² = CD² + (AD/2)² = s² + (s/2)² = s² + s²/4 = 4s²/4 + s²/4 = 5s²/4 ⇒ CM = √(5s²/4) = (√5/2)s

Since ∠BPC=∠CDM=90° and ∠CBP=∠DCM, we know that the triangles BCP and CDM are similar. So we can conclude:

BC/BP = CM/CD
s/4 = (√5/2)s/s
s/4 = √5/2
⇒ s = 4*√5/2 = 2√5

Now we are able to calculate the area of the blue square:

A(ABCD) = s² = (2√5)² = 20

Best regards from Germany

unknownidentity
Автор

*Another solution:*

Draw the segment BM. The triangle ∆BMC is isosceles, since BM = MC.Let h be the height drawn from vertex M in ∆BMC, then we can find the area of this triangle as follows:

h × BC/2 = BP×MC/2

*h × BC= 4MC (1).*

By Pythagoras in ∆GCD, we have:

MC² = MD² + DC² = (DC/2)² + DC²

MC² = DC²(1/4 + 1) = DC²/4 × 5

MC = √5DC/2, being DC = BC, then MC = √5BC/2. Substituting in (1):

h × BC= 4 √5BC/2

h = 2√5 = √20. Now, h= AB=DC=AD=BC. Thus, the area of the square is given by h², i.e, (√20)² = *20.*

imetroangola
Автор

If 20 people like this comment I'll tell you the answer:)

newme
Автор

A very good solution.
Another alternate approach will be:
After determining that MC = x. Sqrt5,
Join points M and B.
Then the area of triangle MBC can be calculated in 2 ways as
1/2.MC.4, and 1/2.2x.2x
Equating these 2 values, we will get 4.MC = 4.xsq = area of the square ABCD!

shashijoshi
Автор

s^2 = 4^2 + 2^2
s^2 = square area = 16 + 4 = 20 square units

Waldlaeufer
Автор

Right triangle BCP
h/b = 1/2 = h/4 --> h= 2 cm
Pytagorean theorem:
s² = b²+h² = 4²+2² = 20cm² (Solved √)

marioalb
Автор

A = 4 A₁ + A₂ = 4 (½b.h) + (s₂)²
A = 4 (½*4*2) + (½4)² = 16 + 4
A = 20 cm² ( Solved √ )

marioalb
Автор

A = s² = (4/cos[atan(1/2)] )²
A = 20 cm² ( Solved √ )

marioalb
Автор

Razón entre catetos =1/2---> PC=4/2=2---> BC=√20---> Área ABCD =20 u².
Gracias y saludos

santiagoarosam
Автор

*Solution:*

In ∆MCD:

Let ∠DCM = α. Hence,

tg α= MD/DC = MD/2MD= 1/2.

In ∆BCP:

tg (90 - α) = 4/PC →1/tg α = 4/PC

2 = 4/PC → PC = 2. By Pythagoras, we have:

BC² = 4² + 2² = 20, this tells us that the area of the square is 20.

imetroangola
Автор

Разрезаем по линии МС, поворачиваем ▲CDM на 180° вокруг точки М, складываем MD с АМ. В результате из малого треугольника и трапеции получается большой треугольник, подобный малому (вдвое больше), с площадью, равной площади квадрата. РВ является его высотой. Точку, в которую перешла т. С, обозначим за Е. ▲ВСЕ прямоугольный, потому площадь также равна произведению катетов. Сторону квадрата за х, тогда х*2х=2х²=4*СЕ/2=2СЕ⇔х²=СЕ. Но СЕ²=х²+(2х)², как гипотенуза, получаем уравнение четвёртой степени: х⁴=х²+4х²=5х². Отрицательные и комплексные корни искать не нужно, потому смело сокращаем: х²=5, откуда х=√5. Можно решать и через пропорцию, заметив, что катеты 1 к 2, гипотенуза кратна √5, а высота, соответственно, должна быть кратна 1/√5. 4х/√5=4, откуда х=√5.

zawatsky
Автор

Call the square's sides 2x. The area will be 4x^2
BPC is similar to MDC.
(2x)/4 = (MC)/(2x)
4*(MC) = 4x^2
Therefore, MC = x^2
Sides are now:
x. 2x, x^2
(PC), 4, 2x
(2x)/(x) = (4)/(PC)
4x = (2x)*(PC), so PC = 2.
Ref BPC: 4^2 + 2^2 = 4x^2
16 + 4 = 4x^2
20 = 4x^2 which is the square's area.
I used 2x as the square's sides rather than plain x. This was becaise there was an early warning that half sides were involved and I wanted to avoid too many fractions.

MrPaulc
Автор

Sir,
May I write
x^2=x√5
> x =√5(dividing both sides by x)

PrithwirajSen-njqq