Electronegativity: bond character/bond type: electronegativity difference and predicting bond type

preview_player
Показать описание
In this video: What is electronegativity, what is electronegativity difference and how is it related to predicting different bond types: non-polar covalent, polar covalent, and ionic; What are the divisions in the continuum from minimum electronegativity difference to maximum difference and where do those divisions come from; How is bond type related to molecular character in terms of non-polar to polar.

CC Academy videos are easy 101 crash course tutorials for step by step Chemistry help on your chemistry homework, problems, and experiments.
Check out other CC Academy videos on this channel:
-Stoichiometry Tutorial, step by step
-Types of Chemical Reactions: How to classify five basic reaction types
-Solution Stoichiometry
-Orbitals the Basics: Atomic Orbitals Tutorial
-Hybrid Orbitals Explained
-Polar Molecules Tutorial: How to determine polarity in a molecule
-Metallic Bonding and Metallic Properties Explained
-Covalent Bonding Tutorial
-Ionic Bonds, Ionic Compounds: What is an ionic bond and how do ionic compounds form
-Electronegativity and bond character (bond type): non-polar covalent, polar, ionic
-Metric Unit Prefix Conversions: How to Convert Metric System Prefixes
-Metric unit conversions shortcut: fast, easy how-to with examples
-Mole Conversions Tutorial: how to convert mole - mass, mole - particle, mass - particle problems
-Frequency, Wavelength, and the Speed of Light
-The Bohr Model of the Atom and Atomic Emission Spectra
-What is Heat: A brief introduction at the particle level
-Rutherford's Gold Foil Experiment
-Unit Conversion Using Dimensional Analysis Tutorial
-What is Fire: Combustion Reaction Tutorial
-Quantum Numbers Tutorial
-Electron Configurations Tutorial and How to Derive Electron Configurations from the Periodic Table
-Concentration and Molarity Explained
-Heating Curves Tutorial
-Naming Ionic Compounds
-Limiting Reactant Tutorial
-PV=nRT The Ideal Gas Law: What is it, What is R, Four practice problems solved including molar mass
-Gas density and PV=nRT, the ideal gas law
-Surface Tension - What is it, how does it form, what properties does it impart

Electronegativity from Wikipedia, November 2020
Electronegativity, symbol χ, measures the tendency of an atom to attract a shared pair of electrons (or electron density).[1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons.

On the most basic level, electronegativity is determined by factors like the nuclear charge (the more protons an atom has, the more "pull" it will have on electrons) and the number and location of other electrons in the atomic shells (the more electrons an atom has, the farther from the nucleus the valence electrons will be, and as a result the less positive charge they will experience—both because of their increased distance from the nucleus, and because the other electrons in the lower energy core orbitals will act to shield the valence electrons from the positively charged nucleus).

The opposite of electronegativity is electropositivity: a measure of an element's ability to donate electrons.

The term "electronegativity" was introduced by Jöns Jacob Berzelius in 1811,[2] though the concept was known before that and was studied by many chemists including Avogadro.[2] In spite of its long history, an accurate scale of electronegativity was not developed until 1932, when Linus Pauling proposed an electronegativity scale which depends on bond energies, as a development of valence bond theory.[3] It has been shown to correlate with a number of other chemical properties. Electronegativity cannot be directly measured and must be calculated from other atomic or molecular properties. Several methods of calculation have been proposed, and although there may be small differences in the numerical values of the electronegativity, all methods show the same periodic trends between elements.

The most commonly used method of calculation is that originally proposed by Linus Pauling. This gives a dimensionless quantity, commonly referred to as the Pauling scale (χr), on a relative scale running from 0.79 to 3.98 (hydrogen = 2.20). When other methods of calculation are used, it is conventional (although not obligatory) to quote the results on a scale that covers the same range of numerical values: this is known as an electronegativity in Pauling units.

As it is usually calculated, electronegativity is not a property of an atom alone, but rather a property of an atom in a molecule.[4] Properties of a free atom include ionization energy and electron affinity. It is to be expected that the electronegativity of an element will vary with its chemical environment,[5] but it is usually considered to be a transferable property, that is to say that similar values will be valid in a variety of situations.
Рекомендации по теме