filmov
tv
10.13) Normalized and Unit Vector in Python
Показать описание
10.1) Inner or Dot Product of Two n-vectors
10.2) Euclidean Norm of an n-vector
10.3) Linear Combination of a Set of Vectors
10.4) Linear Dependence vs Independence
10.5) Linear Independence: Determinant and Inverse
10.6) Python: Reduced Row Echelon Form
10.7) Matrix Inverse in Python
10.8) Determinant and Inverse Matrix in Sympy
10.9) Eigenvalue and Eigenvector
10.10) Eigenvalue and Eigenvector in Sympy
10.11) Standard Basis Vectors
10.12) Matrix Transformation
10.13) Normalized and Unit Vector in Python
10.14) Formula to Calculate the Angle between Two Vectors
10.15) Correlation as the Cosine of the Angle between Two Vectors
10.16) Orthogonal Projection: Formula Derivation
10.17) Cross Product in Python
10.18) Eigenvalue, Trace, and Determinant
10.19) Python: Eigenvalue, Trace, and Determinant
10.2) Euclidean Norm of an n-vector
10.3) Linear Combination of a Set of Vectors
10.4) Linear Dependence vs Independence
10.5) Linear Independence: Determinant and Inverse
10.6) Python: Reduced Row Echelon Form
10.7) Matrix Inverse in Python
10.8) Determinant and Inverse Matrix in Sympy
10.9) Eigenvalue and Eigenvector
10.10) Eigenvalue and Eigenvector in Sympy
10.11) Standard Basis Vectors
10.12) Matrix Transformation
10.13) Normalized and Unit Vector in Python
10.14) Formula to Calculate the Angle between Two Vectors
10.15) Correlation as the Cosine of the Angle between Two Vectors
10.16) Orthogonal Projection: Formula Derivation
10.17) Cross Product in Python
10.18) Eigenvalue, Trace, and Determinant
10.19) Python: Eigenvalue, Trace, and Determinant