Equation on Symmetric Polynomials | Balkan MO 2017

preview_player
Показать описание

Рекомендации по теме
Комментарии
Автор

I love these positive integer problems.

richardfredlund
Автор

GCD of two numbers can be one of the numbers. That means X, or Y can be 1. In which case, you could divide and get an integer.

bollyfan
Автор

Thnku sir Thnku sir Thnku sir Thnku sir Thnku sir Thnku sir Thnku sir Thnku sir Thnku sir

SuperYoonHo
Автор

What about X, Y = 6, 7 / 7, 6? It doesn't give us a solution, but I think it should still be mentioned. We get 13d=1+43*42/(49-42+36)=43, which is not divisible by 13.

maxbow-arrow
Автор

beautiful how do you notice the fact that Y^2 can be only 1 in the first case, I didnt realize that! great explanation :)

pablomartinezgonzalez
Автор

I modified the given equation to (x^2-xy+y^2)(x+y-1)=43xy. Then I analysed this in a similar way leading to the same answer.

ansisozolins
Автор

Pongo s=x+y, p=xy, risulta p=(s^3-s^2)/3s+40, e l'unica soluzione intera è 1, 7 e 7, 1 con s=8, p=7

giuseppemalaguti
Автор

Why do you limit to strictly positive integers ? Beside the trivials (0, 0) and (0, 1), there is also an interesting (1, -6)

tontonbeber
Автор

Comment prouver que XY et X^2_XY+Y^2sont copremiers?

hamzalouliditv