Riemann sums and sigma notation

preview_player
Показать описание


Understanding how Riemann sums can result in "negative area"
Рекомендации по теме
Комментарии
Автор

I'm confused, for 1, I plugged in my values and I got an area of -2.25 for i = 1 (but the area can not be negative so 2.25), then for i = 2 the area is -2 (but the area cannot be negative so 2) point is the graph is not representative of the results? Please correct me if I'm wrong I'm confused.

nonsensespeaks
Автор

I knew it. The moment he said "right hand rectangle" I knew he was going to tangent off and waste time explaining that. But when it comes to understanding important things he never gets to it, just the basics.

GBryce
Автор

Wouldn't the first one give a negative value too

majorux