filmov
tv
A Deep Dive: Embeddings, Vectors & Search Algorithms in LLM's
![preview_player](https://i.ytimg.com/vi/WumStBfoArc/maxresdefault.jpg)
Показать описание
I have seen that many grasp the concept of embeddings, but the deeper technicalities aren’t as commonly understood. I try to close that gap in this video!
00:00 | Introduction
00:55 | Defining embeddings, vectors, embedding models & applications
03:32 | Embeddings in LLM’s like GPT’s, transformer architecture
04:13 | Input embeddings/positional encodings/encoders/decoders/output embeddings
06:35 | Linear & Softmax
08:56 | Conceptualizing dimensions, interpretability, and dimensionality reduction
14:57 | Visualizing embeddings & dimensions using python, 3D/4D
18:09 | Cosine Similarity, equation breakdown
23:13 | Calculating cosine similarity using python
24:47 | Using embeddings and RAG to build LLM’s with your data
27:21 | Approximate Nearest neighbor & Hierarchical Navigable Small World Algorithms (HNSW)
28:14 | Integrated Vectorization
29:36 | How algorithms like HNSW work for retrieval
31:12 | Equation for node assignment, logarithmic exponential distributions, decay, scaling factor, average degree
34:04 | Visualizing how information is retrieved
36:42 | Azure OpenAI Embedding tutorial
-----
Resources:
3) Document Embedding for Scientific Articles:
00:00 | Introduction
00:55 | Defining embeddings, vectors, embedding models & applications
03:32 | Embeddings in LLM’s like GPT’s, transformer architecture
04:13 | Input embeddings/positional encodings/encoders/decoders/output embeddings
06:35 | Linear & Softmax
08:56 | Conceptualizing dimensions, interpretability, and dimensionality reduction
14:57 | Visualizing embeddings & dimensions using python, 3D/4D
18:09 | Cosine Similarity, equation breakdown
23:13 | Calculating cosine similarity using python
24:47 | Using embeddings and RAG to build LLM’s with your data
27:21 | Approximate Nearest neighbor & Hierarchical Navigable Small World Algorithms (HNSW)
28:14 | Integrated Vectorization
29:36 | How algorithms like HNSW work for retrieval
31:12 | Equation for node assignment, logarithmic exponential distributions, decay, scaling factor, average degree
34:04 | Visualizing how information is retrieved
36:42 | Azure OpenAI Embedding tutorial
-----
Resources:
3) Document Embedding for Scientific Articles:
Комментарии