filmov
tv
Cross-task Attention Mechanism for Dense Multi-task Learning
![preview_player](https://i.ytimg.com/vi/8ksUsjbpGOA/maxresdefault.jpg)
Показать описание
Authors: Lopes, Ivan*; VU, Tuan-Hung; de Charette, Raoul Description: Multi-task learning has recently become a promising solution for a comprehensive understanding of complex scenes. With an appropriate design multi-task models can not only be memory-efficient but also favour the exchange of complementary signals across tasks. In this work, we jointly address 2D semantic segmentation, and two geometry-related tasks, namely dense depth, surface normal estimation as well as edge estimation showing their benefit on indoor and outdoor datasets. We propose a novel multi-task learning architecture that exploits pair-wise cross-task exchange through correlation-guided attention and self-attention to enhance the average representation learning for all tasks. We conduct extensive experiments considering three multi-task setups, showing the benefit of our proposal in comparison to competitive baselines in both synthetic and real benchmarks. We also extend our method to the novel multi-task unsupervised domain adaptation setting. Our code is open-source.