Lecture 5: Complete Metric Spaces

preview_player
Показать описание
MIT 18.S190 Introduction To Metric Spaces, IAP 2023
Instructor: Paige Bright

Not every metric space is a complete metric space, but for those that are we can prove some important concepts. We prove the Banach Fixed Point theorem and prove that we can “complete” (or “fill in the holes” of) every metric space.

License: Creative Commons BY-NC-SA

Рекомендации по теме
Комментарии
Автор

30:22 a contraction can also be defined between two different metric spaces, said so considering the BFPT the two metric spaces coincides.

ChrisRossaroDidatticaDigitale
Автор

14:00 one can interchange integral and limit due to uniform convergence.

ChrisRossaroDidatticaDigitale
Автор

@39:00 the stunned silence when yo'brain been fishslapped w/150 yrs of math in 5 lectures.

dacianbonta