filmov
tv
Nvidia Cuda, cuDNN, Conda, PyTorch and TensorFlow Installation with Ubuntu 22.04

Показать описание
This video is all you need to get your Ubuntu 22.04 Deep Learning machine ready with the following:
1. Ubuntu Kernel 5.18 Update
2. Latest Nvidia Display Driver 515.57
3. Cuda Toolkit 11.7
4. cuDNN 8.0 Installation
5. Conda Toolkit 11.7
6. Python 3.9
7. Torch with GPU Support
8. TensorFlow with GPU support
GitHub Resources:
▬▬▬▬▬▬ ⏰ TUTORIAL TIME STAMPS ⏰ ▬▬▬▬▬▬
- (00:00) Quick Intro
- (01:32) Ubuntu Kernel 5.18 Update
- (02:30) Nvidia Driver update 515.57
- (03:05) Driver install in Recovery Mode
- (04:40) Cuda Toolkit 11.7 Installation
- (05:24) Tools nvcc, gcc, g++, cmake check
- (06:06) cudNN 8.x instalation
- (09:32) Conda Cuda Toolkit 11.7 Installation
- (10:22) Python 3.9 and Torch test with GPU
- (10:45) TensorFlow Installation with GPU
- (11:15) Final installation validation
Connect
------------------
Tags:
#nvidia #ai #deeplearning #cnn #ml #lime #aicloud #h2oai #driverlessai #machinelearning #cloud #mlops #model #collaboration #deeplearning #modelserving #modeldeployment #pytorch #datarobot #datahub #streamlit #modeltesting #codeartifact #dataartifact #modelartifact #onnx #aws #kaggle #mapbox #lightgbm #xgboost #dataengineering #pandas #keras #tensorflow #tensorboard #cnn #prodramp #avkashchauhan #LIME #mli #xai #cuda #cuda-nn
1. Ubuntu Kernel 5.18 Update
2. Latest Nvidia Display Driver 515.57
3. Cuda Toolkit 11.7
4. cuDNN 8.0 Installation
5. Conda Toolkit 11.7
6. Python 3.9
7. Torch with GPU Support
8. TensorFlow with GPU support
GitHub Resources:
▬▬▬▬▬▬ ⏰ TUTORIAL TIME STAMPS ⏰ ▬▬▬▬▬▬
- (00:00) Quick Intro
- (01:32) Ubuntu Kernel 5.18 Update
- (02:30) Nvidia Driver update 515.57
- (03:05) Driver install in Recovery Mode
- (04:40) Cuda Toolkit 11.7 Installation
- (05:24) Tools nvcc, gcc, g++, cmake check
- (06:06) cudNN 8.x instalation
- (09:32) Conda Cuda Toolkit 11.7 Installation
- (10:22) Python 3.9 and Torch test with GPU
- (10:45) TensorFlow Installation with GPU
- (11:15) Final installation validation
Connect
------------------
Tags:
#nvidia #ai #deeplearning #cnn #ml #lime #aicloud #h2oai #driverlessai #machinelearning #cloud #mlops #model #collaboration #deeplearning #modelserving #modeldeployment #pytorch #datarobot #datahub #streamlit #modeltesting #codeartifact #dataartifact #modelartifact #onnx #aws #kaggle #mapbox #lightgbm #xgboost #dataengineering #pandas #keras #tensorflow #tensorboard #cnn #prodramp #avkashchauhan #LIME #mli #xai #cuda #cuda-nn
Комментарии