filmov
tv
Complete Python Pandas Data Science Tutorial! (2024 Updated Edition)
Показать описание
Hey, what's up everyone? Welcome back to another video! I'm super excited for this one. We're doing another complete Python Pandas tutorial walkthrough. Five years have passed since the last iteration, and both the library and my knowledge have evolved. We'll cover all the basics and advanced techniques to analyze and manipulate tabular data with Pandas. Whether you're a beginner or an experienced user looking to level up, there's something here for everyone. Let's dive in!
What We’ll Cover:
- Setting up your environment
- Introduction to DataFrames
- Loading data from CSV, Excel, Parquet, and more
- Accessing and manipulating data
- Filtering, adding, and removing columns
- Handling missing values
- Aggregating data with GroupBy and Pivot Tables
- Advanced functionalities like shift, rank, and rolling functions
- Exploring the new features in Pandas 2.0
- Using AI tools like GitHub Copilot and ChatGPT to enhance your workflow
Links Mentioned
Videos Mentioned!
Practice!
-------------------------
Video Timeline!
0:00 - Video Overview
1:11 - Getting Started with Python Pandas | Google Colab
1:21 - Getting Started with Python Pandas | Local Environment Setup (Cloning code, using virtual environment, VS Code)
3:58 - Intro to Dataframes | Creating DataFrames, Index/Columns, Basic Functionality
8:25 - Loading in DataFrames from Files (CSV, Excel, Parquet, etc.)
13:42 - Accessing Data | .head() .tail() .sample()
15:28 - Accessing Data | .loc() .iloc()
19:20 - Setting DataFrame Values w/ loc() & iloc()
20:20 - Accessing Single Values | .at() .iat()
21:11 - Accessing Data | Grab Columns, Sort Values, Ascending/Descending
24:12 - Filtering Data | Syntax Options, Numeric Values, Multiple Conditions
27:58 - Filtering Data | String Operations, Regular Expressions (Regex)
33:09 - Filtering Data | Query Functions
34:20 - Adding / Removing Columns | Basics, Conditional Values, Math Operations, Renaming Columns
47:14 - Adding / Removing Columns | Using Lambda & Custom Functions w/ .apply()
58:33 - Handling Null Values (NaNs) | .fillna() .interpolate() .dropna() .isna() .notna()
1:04:05 - Aggregating Data | value_counts()
1:05:47 - Aggregating Data | Using Groupby - groupby() .sum() .mean() .agg()
1:08:24 - Aggregating Data | Pivot Tables
1:10:28 - Groupby combined with Datetime Operations
1:14:38 - Advanced Functionality | .shift() .rank() .cumsum() .rolling()
1:22:10 - New Functionality | Pandas 1.0 vs Pandas 2.0 - pyarrow
1:25:29 - New Functionality | GitHub Copilot & OpenAI ChatGPT
1:32:05 - What Next?? | Continuing your Python Pandas Learning…
-------------------------
Follow me on social media!
-------------------------
Practice your Python Pandas data science skills with problems on StrataScratch!
Join the Python Army to get access to perks!
*I use affiliate links on the products that I recommend. I may earn a purchase commission or a referral bonus from the usage of these links.
What We’ll Cover:
- Setting up your environment
- Introduction to DataFrames
- Loading data from CSV, Excel, Parquet, and more
- Accessing and manipulating data
- Filtering, adding, and removing columns
- Handling missing values
- Aggregating data with GroupBy and Pivot Tables
- Advanced functionalities like shift, rank, and rolling functions
- Exploring the new features in Pandas 2.0
- Using AI tools like GitHub Copilot and ChatGPT to enhance your workflow
Links Mentioned
Videos Mentioned!
Practice!
-------------------------
Video Timeline!
0:00 - Video Overview
1:11 - Getting Started with Python Pandas | Google Colab
1:21 - Getting Started with Python Pandas | Local Environment Setup (Cloning code, using virtual environment, VS Code)
3:58 - Intro to Dataframes | Creating DataFrames, Index/Columns, Basic Functionality
8:25 - Loading in DataFrames from Files (CSV, Excel, Parquet, etc.)
13:42 - Accessing Data | .head() .tail() .sample()
15:28 - Accessing Data | .loc() .iloc()
19:20 - Setting DataFrame Values w/ loc() & iloc()
20:20 - Accessing Single Values | .at() .iat()
21:11 - Accessing Data | Grab Columns, Sort Values, Ascending/Descending
24:12 - Filtering Data | Syntax Options, Numeric Values, Multiple Conditions
27:58 - Filtering Data | String Operations, Regular Expressions (Regex)
33:09 - Filtering Data | Query Functions
34:20 - Adding / Removing Columns | Basics, Conditional Values, Math Operations, Renaming Columns
47:14 - Adding / Removing Columns | Using Lambda & Custom Functions w/ .apply()
58:33 - Handling Null Values (NaNs) | .fillna() .interpolate() .dropna() .isna() .notna()
1:04:05 - Aggregating Data | value_counts()
1:05:47 - Aggregating Data | Using Groupby - groupby() .sum() .mean() .agg()
1:08:24 - Aggregating Data | Pivot Tables
1:10:28 - Groupby combined with Datetime Operations
1:14:38 - Advanced Functionality | .shift() .rank() .cumsum() .rolling()
1:22:10 - New Functionality | Pandas 1.0 vs Pandas 2.0 - pyarrow
1:25:29 - New Functionality | GitHub Copilot & OpenAI ChatGPT
1:32:05 - What Next?? | Continuing your Python Pandas Learning…
-------------------------
Follow me on social media!
-------------------------
Practice your Python Pandas data science skills with problems on StrataScratch!
Join the Python Army to get access to perks!
*I use affiliate links on the products that I recommend. I may earn a purchase commission or a referral bonus from the usage of these links.
Комментарии