filmov
tv
Discover LlamaIndex: Bottoms-Up Development with LLMs (Part 4, Embeddings)
![preview_player](https://i.ytimg.com/vi/2c64G-iDJKQ/maxresdefault.jpg)
Показать описание
In this video, we present the concept of embedding models - models that generate text embeddings, which are numerical representations of text that enable semantic search. We provide an overview of different embedding models and discuss the benchmarking of these models (MTEB leaderboard). Additionally, we demonstrate how to use different embedding models, such as OpenAI and Instructor embeddings, and show how to implement them in LlamaIndex.
Discover LlamaIndex: Bottoms-Up Development With LLMs (Part 1, LLMs and Prompts)
Discover LlamaIndex: Bottoms-Up Development with LLMs (Part 5, Retrievers + Node Postprocessors)
Discover LlamaIndex: Bottoms-Up Development with LLMs (Part 3, Evaluation)
Discover LlamaIndex: Bottoms-Up Development With LLMs (Part 2, Documents and Metadata)
Discover LlamaIndex: Bottoms-Up Development with LLMs (Part 4, Embeddings)
Discover LlamaIndex: SEC Insights, End-to-End Guide
Discover LlamaIndex: Document Management
Discover LlamaIndex: Ask Complex Queries over Multiple Documents
Mastering LlamaIndex : Create, Save & Load Indexes, Customize LLMs, Prompts & Embeddings | C...
Langchain vs Llama Index: Which one should you use?
Discover LlamaIndex: Custom Retrievers + Hybrid Search
How LlamaIndex Brings Data to LLMs
Discover LlamaIndex: Key Components to build QA Systems
LlamaIndex Webinar: Document Metadata and Local Models for Better, Faster Retrieval
LlamaIndex for Dummies: Choosing The Right Index For Your Use Case
Discover LlamaIndex: Custom Tools for Data Agents
Discover LlamaIndex: JSON Query Engine
Discover LlamaIndex: Introduction to Data Agents for Developers
Llama Index: Document management reaction
LlamaIndex Workshop: Evaluation-Driven Development (EDD)
LlamaIndex: Building RAG Applications with Multiple Data Sources
@LlamaIndex CEO Jerry Liu talks about what is Retrieval Augmented Generation #shorts
Building And Troubleshooting An Advanced LLM Query Engine
LlamaIndex overview & use cases | LangChain integration
Комментарии