Maximum Likelihood Hypothesis and Least Squared Error Hypothesis by Mahesh Huddar

preview_player
Показать описание
Maximum Likelihood Hypothesis and Least Squared Error Hypothesis by Mahesh Huddar

naive Bayes theorem in machine learning,
naive Bayes theorem,
naive Bayes theorem in data mining,
naive Bayes theorem probability,
naive Bayes theorem in dmdw,
naive Bayes theorem explained,
naive Bayes rule example,
naive Bayes rule,
maximum a posteriori estimation,
maximum a posteriori hypothesis,
maximum a posteriori (map) estimation,
maximum a posteriori vs maximum likelihood,
maximum a posteriori (map),
maximum a posteriori machine learning,
brute force map learning algorithm,
brute force map hypothesis,
brute force vs irradiance map
Рекомендации по теме
Комментарии
Автор

thank you soo much sir for this amazing explanation.so clearly explained

pratheekhebbar
Автор

Great explanation! Very easy to understand

sumjasreddy
Автор

Nice explanation sir tq so much. Keep doing sir🙏

ravalimanchala
Автор

Sir explain bayesian decision theory all concepts

jithendrasabbisetty
Автор

Introduction to Machine Learning by Ethem Alpaydin.

jithendrasabbisetty
Автор

Hlo sir i need machine learning python notes sir can you please help me sir

the_hyper_here
Автор

Agar aap English mein bataenge to ham log Quantum se padh Lenge theek hai kripya Karke Hindi mein bataiye to ki Sabhi bacche padh sake theek hai ham log Hindi mein padenge Kyunki ham log up se padh rahe hain aur UP Board se bhi padhen aur ham log Uttar Pradesh Sarkar Ke Chahte Hain

rajnishmishra