Все публикации

Mobius Inversion Formula | State and Prove Möbius inversion formula | Lecture - 24

Mobius Function | Examples | If n is even integer, then prove summation mu(d) phi(d) = 0 where d|n

Mobius Function | Examples | Lecture - 22

Mobius Function | E Merten’s Lemma | Theorem | Lecture- 21

Mobius Function | Definition | Prove that Mobius function is multiplicative function | Lecture-20

Perfect Number | Theorem | Examples | Every Even perfect number ends in 6 or 8 | Lecture- 19

Sigma Function | Examples | If n is composite number then show sigma (n) is greater than n + n^1/2.

Sigma Function | Examples | Lecture-17

Sigma Function | Examples | Prove sigma ( 12 n - 1 ) is congruent to 0 (mod 12) | Lecture - 16

Sigma Function | Prove sigma (n) is odd iff n is a perfect square or twice a perfect square | Lec 15

Sigma and Sigma k Functions | Theorems | Prove sigma function is multiplicative function |Lecture 14

Divisor Function | Examples | Find the smallest value of n s.t. d(n) = 10 | Lecture- 13

Divisor Function | Prove that divisor function d(n) is an odd integer iff n is perfect square |

Divisor Function d(n) | Prove that divisor function d(n) is multiplicative function | Lecture - 11

Euler’s Phi Function | Examples Of Gauss’s Theorem | Lecture- 10

Euler’s Phi Function | Examples | For positive integer n, prove 1/2 is less than phi(n) | Lecture 9

Euler’s Phi Function | Examples | If n is a composite number then phi (n) = n-n^1/2 | Lecture-8

Euler’s Phi Function | Theorem | Prove summation k = n phi (n)/2, where ( n, k) = 1 | Lecture - 7

Euler’s Phi Function | Example | Find all positive integer n for which phi ( n ) = 24 | Lecture - 6

Euler’s Phi Function | Examples | Find all solution of n for which phi (n) = 8 | Lecture-5

Euler’s Phi Function | Examples | Show that phi (3n)= 3 phi(n) iff 3|n | Lecture- 4

Euler’s Phi Function | Theorems | Gauss Theorem | Lecture 3

Euler’s Phi Function| Prove that Euler’s Phi function is multiplicative function | Lecture - 2

Arithmetic Functions | Euler’s Phi Function | Definition | Theorems | Lecture- 1