filmov
tv
Mobius Function | Examples | Lecture - 22
Показать описание
1. If r denotes number of distinct primes factors of a positive integer n prove that summation | mu(d) | = 2^k where d is divisor of n
2. For each positive integer n show that
mu(n) mu(n+1) mu(n+2) mu(n+3) = 0
3. Find a positive integer n such that
mu(n) + mu(n+1) + mu(n+2) = 3
2. For each positive integer n show that
mu(n) mu(n+1) mu(n+2) mu(n+3) = 0
3. Find a positive integer n such that
mu(n) + mu(n+1) + mu(n+2) = 3