¿Por qué No han Enseñado ESTO del Círculo?

preview_player
Показать описание
Disfruta de esta Hermosa Demostración GRÁFICA del Área del Círculo 😱

👉 CURSO Completo de Cálculo Nivel HARVARD

👉Los MEJORES EXAMENES de ADMISIÓN del MUNDO

👉 ÚNETE al CANAL descubre 680 vídeos y 18 CURSOS completos EXCLUSIVOS

► CURSOS COMPLETOS de MATEMÁTICAS

#matemática #maths

📸 SIGUEME en IG ►► themathrocks
Рекомендации по теме
Комментарии
Автор

Carajos que buena explicación, nunca me lo imaginé así

TulumTuathaD
Автор

En el colegio me lo enseñaron, pero descomponiendo la figura del círculo en pequeños sectores circulares vistos como pequeños triángulos con una base muy pequeña, que conforman un rectángulo de base πr y altura r, pero en esa época ni yo ni mis compañeros entendíamos el por qué de esa vaina con claridad y sólo nos quedábamos con la fórmula final: A=πr^2, como los ingenieros. Ya en la universidad lo entendí con precisión, y descubrí muchas otras formas de deducir el área del círculo en Geometría Euclidiana y Cálculo Integral.

brayancr
Автор

Esta configuracion de conversion de un circulo a un triangulo, me da una idea de mi conjetura de la creacion del universo que no es el big bang sino con fundamento sobre el SUPER-INFINITO (SI), antes de creacion del tiempo, primero se creo el espacio virgen (O LA NADA DE QUE TANTO SE HABLA) pero que existió solo en un momento porque a partir de la energia de (SI) se creó la materia y la primera interaccion entre el volumen de la materia y el espacio (que dejo de ser LA NADA) a partir de la creacion de esta materia. Cuando interactuó la materia con el espacio virgen existio una "compresion" del espacio al aumentar la materia su volumen por (SI) y crearse el tiempo por primera vez t=0. Esta imagenes del circulo me da una idea Flores, Lima, Perú.

ramiroflores
Автор

Corrección, 2.pi.r es el perímetro del circulo, no el diámetro

alexcastillo
Автор

😮caramba muy interesante, y estaba en nuestras caras, ya que en un círculo C de radio r y en un triángulo ABC, cualquiera, de altura r y de base 2πr, la longitud de una circunferencia interna y concentrica al círculo C y la longitud de un segmento paralelo a dicha base del triángulo ABC son iguales, entre si, si están a la misma distancia del centro y del vértice de altura r del círculo y del triángulo respectivamente.

manuelelorejaicuchi
Автор

Di te lo explican asi, el lio aumentaria asi como el error, ya que la primera "cascara" no tiene la longitud del diametro(2r) sino la longitud de la circunferencia (2πr). Bien empezariamos!!.Menos mal que no nos enseñaron esto!!!

jpo
Автор

Maestro si sabemos cuanto mide un perimetro por añadidura debemos tener un diametro no?? Nadie se pregunta si tenemos una pompa de jabon y utilizamos un hilo bañado en jabón, para poder hacer una pompa de jabon con el hilo como forma, podremos calcular su diametro y su perimetro teniendo en cuenta la tension superficial a la que se ve sujeto el hilo en la pompa y si sabemos cuanto media el perimetro del hilo y lo dividimos por el diametro, nos dara como resultado pi o puede darse otra cifra, teniendo en cuenta que el area del hilo burbuja es la menor posible debido a la tension superficial del mismo. Y si el hilo se estira debido a la tension superficial, es igual su perimetro sin ser burbuja o siendo un pompa de hilo???

avensisverso
Автор

Que maravilla, claro y bonito. Gracias por ese regalo.

roquejacintoalcalamarin
Автор

Profe Jhon, cometiste un error al decir que 2pi.r es el diámetro del círculo, sino que es la longitud de la circunferencia.
Estoy seguro que esto no se daba así porque no existían programas como el geogebra donde uno puede ver las cosas de forma más intuitiva.

REDominguez
Автор

¿Porque no te explicaron esto?
Porque todo es mucho más sencillo y elegante con integrales xd

Esta explicación de hecho es una interpretación geométrica de una integral, y hasta que no se explique con estas está forma de verlo es inválida (por ejemplo, como sabrías decir que lo que se está formando es un triángulo y no otra cosa? Eso solo lo puedes explicar con integrales)

TheMergan
Автор

he visto varias formas de demostrar tanto el área como el perímetro de una circunferencia, pero esta es nueva para mi. Las matemáticas son hermosas ;)

aaronreyes
Автор

Otra idea, el círculo crece en area, conforme crece el radio, a base de "añadir la cascara exterior". Así que la derivada del area respecto del radio, la velocidad a la que crece el area por cada punto que crece el radio, es la longitud de la circunferencia.

Asi que longitud circunferencia= derivada del área " 2Pi*r

alexf
Автор

Intuitivamente es válido, pero formalmente hablando hay una imprecisión: que ocurre con el paso al límite, lo obviamos?

mariaesperanzaoviedodearau
Автор

Median la circunferencia y luego plasmarlo en una figura y listo.
Un resultado cercano al valor

life-bryr
Автор

Ok ya, y como demuestras que el aplilamiento de los trozos sacados del circulo forma exactamente una recta, puede ser una curva, jake mate ceeebron

juliocesarm.espinola
Автор

Verlo al contrario es mucho más fácil, la derivada del área de un círculo, es el perímetro del círculo; si lo enseñamos, pero de otras formas.

yobaniafricano
Автор

Supongo que en una demostración vendría justificado el porqué al pelar todas las capas terminas teniendo que la altura del triángulo es justo igual al radio del círculo. O cómo garantizamos este punto?

axscs
Автор

Pude ver como los pixeles en los bordes se apilaban una encima de la otra dando una forma de escalones, todo un crack por eso lo admiro.

williamsmamanimamani
Автор

Sabías que si íntegras a los radianes en función del radio te da 2πr? 2πr es la fórmula del perímetro y si la vuelves a integrar obtienes πr² que es la fórmula del área.

ELazriel
Автор

La primera cáscara sería el perímetro del círculo, no el diámetro

Oscar-ls
welcome to shbcf.ru