filmov
tv
Extremal Combinatorics Lecture 20: Erdős–Simonovits Supersaturation Theorem
Показать описание
Jonathan Noel
Рекомендации по теме
0:48:48
Extremal Combinatorics Lecture 20: Erdős–Simonovits Supersaturation Theorem
1:19:35
Erdős–Stone Theorem. MATH 492/529 Extremal Combinatorics, University of Victoria.
0:45:32
Jacob Fox “Bounded VC-dimension and Extremal Graph Theory” | MLC '20
1:03:17
Graph Theory, Lecture 17: Extremal graph theory II: Dense graphs
0:28:42
Goodman's Bound. MATH 492/529 Extremal Combinatorics, University of Victoria.
0:49:18
Extremal Problems for Uniformly Dense Hypergraphs - Mathias Schacht
1:04:26
21April16 Tutte A proof of the Erdős–Faber–Lovász conjecture Tom Kelly
0:21:16
SiGMa 2017 László Miklós Lovász, Extremal graph theory and finite forcibility
1:02:59
Four and a half proofs of a product-measure version of the Erdös-Ko-Rado Theorem - Ehud Friedgut
0:45:16
2022.06.29, Xizhi Liu, Hypergraph Turán problem: from 1 to ∞
0:50:30
The method of hypergraph containers – József Balogh & Robert Morris – ICM2018
1:05:16
János Körner - On The Mathematics of Distinguishable Difference
0:37:04
Freddie Illingworth - 'Minimum degree stability and locally colourable graphs' | MoCCA&apo...
0:36:09
Balázs Patkós - 'Induced and non-induced poset saturation problems' | CGD II
0:45:08
Balázs Patkós - 'Generalized Turán results for complete bipartite graphs and intersecting cliqu...
1:22:47
Programa de Mestrado: Combinatória I - Aula 10
0:23:05
József Balogh 'Extensions of Mantel’s Theorem' | PCO 2020
0:25:08
Hypergraphs and Acute Triangles | A Surprising Connection! | #SoMEpi
0:48:57
2021 Graph theory Lecture 23, Extremal graph theory (2)
0:41:49
03/30/21 - Lina Li - Intersecting families of sets are typically trivial
1:01:07
Abhishek Methuku (University of Birmingham): A proof of the Erdős–Faber–Lovász conjecture
0:43:43
Martin Tassy: 'Understanding the asymptotics of the number of tableaux of skew shape through a ...
1:21:21
8. Szemerédi's graph regularity lemma III: further applications
0:52:11
Lecture 1: The Method of Hypergraph Containers (mini-course)