Σειρές fourier Πραγματικών συναρτήσεων | f(x)= |x| | Άσκηση 1

preview_player
Показать описание
Στο βίντεο αυτό λύνουμε μια άσκηση πάνω στις σειρές fourier Πραγματικών Συναρτήσεων. Πιο συγκεκριμένα θα υπολογίσουμε την σειρά fourier της συναρτησης f(x)=|x|.

Για περισσότερα βίντεο στις σειρές Fourier Πραγματικών Συναρτήσεων δες την παρακάτω playlist:

Ακολούθησε την σελίδα του καναλιού στο facebook:

Ελπίζω να σας άρεσε το βίντεο και να σας βοήθησε στο διάβασμα/κατανόηση σας πάνω στην σειρές Fourier Πραγματικών Συναρτήσεων.

Εάν σας άρεσε κάντε ένα λάικ στο βίντεο και κοινοποιήστε το σε όσους τους αρέσει η φυσική. Μια εγγραφή στο κανάλι θα βοηθούσε πολύ καθώς και να ενεργοποιήσετε το καμπανάκι για να μην χάνετε ασκήσεις που θα ανεβαίνουν στο κανάλι.

#σειρέςFourier #Μαθηματικά #Προβλήματα_Φυσικής
Рекомендации по теме
Комментарии
Автор

Καταπληκτικό βίντεο. Καιρό έψαχνα ασκήσεις πάνω στο θέμα ελπίζω και σε περισσότερες και πάνω στον μετασχηματισμό Fourier

evidampani
Автор

Εχω μια συνάρτηση Fourier οπου ειναι η συναρτηση με διακλαδωση προσοχη σε αυτο
f(x)=x, 0<x<π
1, -π<x<0
Θα περιμενω την απαντηση σας.

userbats
Автор

Γιατί στη συγκεκριμένη άσκηση το αo και το αn ισούται με 0. Και στο bn μου βγαίνει 1/π*[cos(nπ)-cos(0)-cos(n2π)+cos(nπ)]/n, και τι κανω παρα περα;

userbats
Автор

Θέλω να μου λύσετε άλλη μια σειρά fourier (διάκλαδη)που είναι η.
παρακάτω
F(x)=-1, 0<=x<=π
1, π<x<2π
Αν μπορείτε να τη λύσετε άμεσα γιατί σε ένα μήνα περίπου έχω εξεταστική

userbats
Автор

Οκ, θα περιμένω, απλα θελω να τη δειτε μη τυχόν και μου εχει ξεφυγει κατι.

userbats
Автор

Στο τελος που λέτε ή αλλιως an=-4/π*(2n-1)^2 ειναι υποψρωεωτικό, ;ν δε το γραψω ετσι ατο τελικο τυπο οως το γραφω με το -4/π*n^2 ;;

userbats
Автор

Κάποια άλλη στιγμή θέλω να μου λύσετε μια διαφορική εξίσωση, την παρακάτω
uxx+uyy=0, u(x, 0)=e^x και uy(x, 0)=0

userbats
Автор

Αν έχω cos(n2π) ισούται με (-1)^n ή αυτό ισχύει όταν έχω μόνο cos(nπ)

userbats