filmov
tv
Evolutionary computation | Wikipedia audio article

Показать описание
This is an audio version of the Wikipedia Article:
00:01:29 1 History
00:03:50 2 Techniques
00:05:05 3 Evolutionary algorithms
00:06:39 4 Evolutionary algorithms and biology
00:08:34 5 Notable practitioners
00:09:30 6 Conferences
00:10:08 7 See also
00:11:16 8 Weblinks
00:11:31 9 Bibliography
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
Other Wikipedia audio articles at:
Upload your own Wikipedia articles through:
Speaking Rate: 0.9381647771979125
Voice name: en-US-Wavenet-C
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated. Each new generation is produced by stochastically removing less desired solutions, and introducing small random changes. In biological terminology, a population of solutions is subjected to natural selection (or artificial selection) and mutation. As a result, the population will gradually evolve to increase in fitness, in this case the chosen fitness function of the algorithm.
Evolutionary computation techniques can produce highly optimized solutions in a wide range of problem settings, making them popular in computer science. Many variants and extensions exist, suited to more specific families of problems and data structures. Evolutionary computation is also sometimes used in evolutionary biology as an in silico experimental procedure to study common aspects of general evolutionary processes.
00:01:29 1 History
00:03:50 2 Techniques
00:05:05 3 Evolutionary algorithms
00:06:39 4 Evolutionary algorithms and biology
00:08:34 5 Notable practitioners
00:09:30 6 Conferences
00:10:08 7 See also
00:11:16 8 Weblinks
00:11:31 9 Bibliography
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
Other Wikipedia audio articles at:
Upload your own Wikipedia articles through:
Speaking Rate: 0.9381647771979125
Voice name: en-US-Wavenet-C
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated. Each new generation is produced by stochastically removing less desired solutions, and introducing small random changes. In biological terminology, a population of solutions is subjected to natural selection (or artificial selection) and mutation. As a result, the population will gradually evolve to increase in fitness, in this case the chosen fitness function of the algorithm.
Evolutionary computation techniques can produce highly optimized solutions in a wide range of problem settings, making them popular in computer science. Many variants and extensions exist, suited to more specific families of problems and data structures. Evolutionary computation is also sometimes used in evolutionary biology as an in silico experimental procedure to study common aspects of general evolutionary processes.