filmov
tv
[CVPR 2020 Tutorial] AutoML for TinyML with Once-for-All Network
Показать описание
Once for All: Train One Network and Specialize it for Efficient Deployment, ICLR'2020
#TinyML, #EfficientAI
MIT HAN Lab
TinyML
NAS
EfficientAI
Рекомендации по теме
0:39:35
[CVPR 2020 Tutorial] AutoML for TinyML with Once-for-All Network
0:39:35
CVPR'20 tutorial: AutoML for TinyML with Once-for-All Network
0:04:51
CVPR 2020 Tutorial: From HPO to NAS: Automated Deep Learning (ProxylessNAS Tutorial)
0:20:22
CVPR 2020 Tutorial: From HPO to NAS: Automated Deep Learning (Quick Start Example)
0:41:53
[ECCV 2020 Tutorial] AutoML for Efficient 3D Deep Learning
0:05:22
[CVPR 2020] APQ: Joint Search for Network Architecture, Pruning and Quantization Policy
0:40:53
CVPR'20 iMLCV tutorial: Understanding Deep Neural Networks by Ruth C. Fong
0:35:40
[CVPR 2020] Simple but Effective Image Enhancement Techniques
1:00:02
Mingxing Tan | AutoML for Efficient Vision Learning
0:01:00
CVPR 2020: Generative Hybrid Representations for Activity Forecasting with No-Regret Learning
0:55:15
[CVPR 2020] RANSAC in 2020 tutorial: Traditional approaches
6:06:48
[CVPR 2020] Novel View Synthesis Tutorial
0:09:10
CVPR 2020 Paper Compilation - TUM Visual Computing Lab & Collaborators
1:37:07
CVPR 2020 Workshop: Visual Localization Challenge
0:24:29
HKML S4E2 - AutoGL - An autoML framework & toolkit for machine learning on graph
0:05:00
SQuINTing at VQA Models: Introspecting VQA Models with Sub-Questions
0:21:12
OFA: AutoML for TinyML with Once-For-All Networks @ MIT Driverless
0:08:18
Neural Architecture Transfer (TPAMI 2021, CVPR 2020 NAS Workshop)
0:00:51
Winning solution for Low Power Computer Vision Challenge: Once for All Network
0:01:01
CVPR 2020 - Compressed Volumetric Heatmaps for Multi-Person 3D Pose Estimation
0:32:48
AutoGluon Overview ICML'20 Workshop
0:09:39
ECCV 2020 - presentation - Fast Video Object Segmentation using the Global Context Module
0:23:20
Self-supervised Learning for Temporal Correspondence, Sifei Liu
0:05:03
Towards Efficient Model Compression via Learned Global Ranking