filmov
tv
Асимптотика детерминантов (часть 3) - Буфетов Александр Игоревич
Показать описание
Докладчик: Буфетов Александр Игоревич (МИАН)
Тема доклада: Мини-курс «Асимптотика детерминантов».
Аннотация: Бернхард Риман, в своей инаугурационной диссертации «Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse»(1851), ставит вопрос о граничном поведении голоморфных функций --- вопрос Римана, уточнённый и обобщённый Гильбертом, мы называем сегодня проблемой Римана-Гильберта --- и тем полагает, по слову Н.К. Никольского, краеугольный камень в основание будущей теории операторов Тёплица. Задачу Римана-Гильберта, следуя пионерским работам Юлиана Васильевича Сохоцкого в Санкт-Петербурге, подробно исследовали в Москве Николай Николаевич Лузин и Иван Иванович Привалов.
Отто Тёплиц, классик теории операторов, не занимался, однако, операторами, носящими сегодня его имя. Систематическое изучение операторов Тёплица начал, по-видимому, Габор Сегё, и первая теорема Сегё, вместе с её обобщениями, данными Андреем Николаевичем Колмогоровым и Марком Григорьевичем Крейном, будет отправной точкой наших рассмотрений. Мы обратимся затем ко второй теореме Сегё, определяющей асимптотику детерминантов Тёплица, и к формуле Бородина-Окунькова-Джеронимо-Кейса, дающей остаточный член во второй теореме Сегё. Детерминанты Тёплица возникают в самых разных задачах, а у теорем Сегё, как и у формулы Бородина-Окунькова-Джеронимо-Кейса, есть очень разные доказательства: аналитические, алгебраические, вероятностные. Особый акцент будет поставлен в курсе на приложения операторов Тёплица к детерминантным точечным процессам, возникающим при изучении случайных матриц и в асимптотической комбинаторике.
Speaker: A. I. Bufetov
Topic: Bernhard Riemann, in his inaugural dissertation, "Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen komplexen Grösse" (1851), raised the question of the boundary behavior of holomorphic functions, which today is known as the Riemann-Hilbert problem. This important question, clarified and generalized by Hilbert, is considered to be the cornerstone for the future development of Toeplitz operator theory, according to Nikolsky. The Riemann-Hilbert problem was first studied by Julian Vasilyevich Sokhotsky in Petersburg, and was later detailed by Nikolai Nikolaevich Luzin and Ivan Ivanovich Privalov in Moscow.
Otto Toeplitz, one of the greats in the field of operator theory, did not focus on the operators that bear his name. The systematic study of these operators was apparently initiated by Gabor Szegő, and his first theorem, along with its generalizations by Andrei Kolmogorov and Mark Crane, will serve as the starting point for our discussion. We then turn to Szegő's second theorem, which determines the asymptotic behavior of the determinants of Toeplitz matrices. Additionally, we explore the Borodin-Okounkov-Geronimus-Case formula, which provides the residual term in this second theorem. Toeplitz determinants are found in a wide range of problems, and Szegő's theorems like the Borodin-Okunikov-Geronimos-Case formula have very different approaches: analytical, algebraic, or probabilistic. In the course, we will emphasize the applications of Toeplitz operators in the context of determinant point processes that arise in the study of random matrices and asymptotic combinatorics.
Тема доклада: Мини-курс «Асимптотика детерминантов».
Аннотация: Бернхард Риман, в своей инаугурационной диссертации «Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse»(1851), ставит вопрос о граничном поведении голоморфных функций --- вопрос Римана, уточнённый и обобщённый Гильбертом, мы называем сегодня проблемой Римана-Гильберта --- и тем полагает, по слову Н.К. Никольского, краеугольный камень в основание будущей теории операторов Тёплица. Задачу Римана-Гильберта, следуя пионерским работам Юлиана Васильевича Сохоцкого в Санкт-Петербурге, подробно исследовали в Москве Николай Николаевич Лузин и Иван Иванович Привалов.
Отто Тёплиц, классик теории операторов, не занимался, однако, операторами, носящими сегодня его имя. Систематическое изучение операторов Тёплица начал, по-видимому, Габор Сегё, и первая теорема Сегё, вместе с её обобщениями, данными Андреем Николаевичем Колмогоровым и Марком Григорьевичем Крейном, будет отправной точкой наших рассмотрений. Мы обратимся затем ко второй теореме Сегё, определяющей асимптотику детерминантов Тёплица, и к формуле Бородина-Окунькова-Джеронимо-Кейса, дающей остаточный член во второй теореме Сегё. Детерминанты Тёплица возникают в самых разных задачах, а у теорем Сегё, как и у формулы Бородина-Окунькова-Джеронимо-Кейса, есть очень разные доказательства: аналитические, алгебраические, вероятностные. Особый акцент будет поставлен в курсе на приложения операторов Тёплица к детерминантным точечным процессам, возникающим при изучении случайных матриц и в асимптотической комбинаторике.
Speaker: A. I. Bufetov
Topic: Bernhard Riemann, in his inaugural dissertation, "Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen komplexen Grösse" (1851), raised the question of the boundary behavior of holomorphic functions, which today is known as the Riemann-Hilbert problem. This important question, clarified and generalized by Hilbert, is considered to be the cornerstone for the future development of Toeplitz operator theory, according to Nikolsky. The Riemann-Hilbert problem was first studied by Julian Vasilyevich Sokhotsky in Petersburg, and was later detailed by Nikolai Nikolaevich Luzin and Ivan Ivanovich Privalov in Moscow.
Otto Toeplitz, one of the greats in the field of operator theory, did not focus on the operators that bear his name. The systematic study of these operators was apparently initiated by Gabor Szegő, and his first theorem, along with its generalizations by Andrei Kolmogorov and Mark Crane, will serve as the starting point for our discussion. We then turn to Szegő's second theorem, which determines the asymptotic behavior of the determinants of Toeplitz matrices. Additionally, we explore the Borodin-Okounkov-Geronimus-Case formula, which provides the residual term in this second theorem. Toeplitz determinants are found in a wide range of problems, and Szegő's theorems like the Borodin-Okunikov-Geronimos-Case formula have very different approaches: analytical, algebraic, or probabilistic. In the course, we will emphasize the applications of Toeplitz operators in the context of determinant point processes that arise in the study of random matrices and asymptotic combinatorics.