Pipeline in Machine Learning | sklearn | TeKnowledGeek

preview_player
Показать описание
Pipeline in Machine Learning | sklearn | TeKnowledGeek

A machine learning pipeline is a way to codify and automate the workflow it takes to produce a machine learning model. Machine learning pipelines consist of multiple sequential steps that do everything from data extraction and preprocessing to model training and deployment.

One Hot Encoding | Different Types of Feature Engineering Encoding Techniques | TeKnowledGeek

This video will show you how to create a workflow using sklearn pipeline method.

1. Why do we need to use sklearn Pipeline?
2. How can we create a workflow using sklearn Pipeline?
3. What are the pros and cons of sklearn Pipeline?

Related video title :
One Hot Encoding | Different Types of Feature Engineering Encoding Techniques | TeKnowledGeek

related tags :
python
analytics
machine learning
imputer
dropna
fillna
features
target
dependent variables
independent variables
sklearn
imputer sklearn example
sklearn imputer
machine learning preprocessing
imputer
imputer find the missing values in python
fit_transform
imputer on missing values python
python imputer example
imputer sklearn
imputer python
how to use imputer
imputer function in python
normalization in feature scaling
code with akshay
how to do feature scaling in machine learning

reference:

tags : #Pipeline #FeatureScaling #FeatureEngineering​ #Data_Preprocessing​ #machine_learning​ #teknowledgeek​
Рекомендации по теме
welcome to shbcf.ru