filmov
tv
Leveraging Wasm for Portable AI Inference Across GPUs, CPUs, OS & Cloud...- Miley Fu & Hung-Ying Tai
Показать описание
Leveraging Wasm for Portable AI Inference Across GPUs, CPUs, OS & Cloud-Native Environments | 利用Wasm在GPU、CPU、操作系统和云原生环境中进行可移植的AI推理 - Miley Fu & Hung-Ying Tai, Second State
This talk will focus on the advantages of using WebAssembly (Wasm) for running AI inference tasks in a cloud-native ecosystem. We will explore how wasm empowers devs to develop on their own PC and have their AI inference uniformly performed across different hardware, including GPUs and CPUs, operating systems, edge cloud etc. We'll discuss how Wasm and Wasm runtime facilitates seamless integration into cloud-native frameworks, enhancing the deployment and scalability of AI applications. This presentation will specifically highlight how Wasm provides a flexible, efficient solution suitable for diverse cloud-native architectures, including Kubernetes, to allow developers to fully tap the potential of LLMs, especially open source LLMs. The session offers insights into maximizing the potential of AI applications by leveraging the cross-platform capabilities of Wasm, ensuring consistency, low cost, and efficiency in AI inference across different computing environments.
本次演讲将重点介绍在云原生生态中运行AI推理任务时使用WebAssembly(Wasm)的优势。我们将探讨如何使用Wasm使开发者能够在自己的个人电脑上开发,并在不同硬件(包括GPU和CPU)、操作系统、边缘云等上统一执行他们的AI推理。 我们将讨论Wasm和Wasm运行时如何实现无缝集成到云原生框架中,增强AI应用程序的部署和可扩展性。本次演示将重点展示Wasm如何提供灵活、高效的解决方案,适用于各种云原生架构,包括Kubernetes,以帮助开发者充分发挥大语言模型的潜力,特别是开源大语言模型。 将深入探讨通过利用Wasm的跨平台能力来最大限度地发挥AI应用的潜力,确保在不同计算环境中实现AI推理的一致性、低成本和高效性。
Комментарии