filmov
tv
Variable Encoding in Machine Learning

Показать описание
In this video, you will learn how to transform categorical variables into numeric values in Python using the LabelEncoder class from scikit-learn library.
Watch the full video which covers all the following topics
Introduction to Logistic Regression
Data Preparation for Logistic Regression
Encoding categorical variables using LabelEncoder for scikit-learn
Standardize and normalize the data points using StandardScaler
Split the data into training and testing sets using train_test_split
Train the model using the LogisticRegression class scikit-learn library
Predict the test dataset
Evaluate the model performance using precision, recall, f1-score from sckit-learn metrics module
Save and Deploy the model using the Pickle library
Test the model using the new test dataset
-----------------------------------------------------------------------------------
Join this channel to get exclusive access:
----------------------------------------------------------------------------------
Join the discussion groups:
-----------------------------------------------------------------------------------
COME AGAIN!
-----------------------------------------------------------------------------------
Watch the full video which covers all the following topics
Introduction to Logistic Regression
Data Preparation for Logistic Regression
Encoding categorical variables using LabelEncoder for scikit-learn
Standardize and normalize the data points using StandardScaler
Split the data into training and testing sets using train_test_split
Train the model using the LogisticRegression class scikit-learn library
Predict the test dataset
Evaluate the model performance using precision, recall, f1-score from sckit-learn metrics module
Save and Deploy the model using the Pickle library
Test the model using the new test dataset
-----------------------------------------------------------------------------------
Join this channel to get exclusive access:
----------------------------------------------------------------------------------
Join the discussion groups:
-----------------------------------------------------------------------------------
COME AGAIN!
-----------------------------------------------------------------------------------