Number Theory | Rational Points on the Unit Circle

preview_player
Показать описание
We describe all points on the unit circle with rational coordinates. Furthermore, we outline a strategy for finding rational points on other quadratic curves.

Рекомендации по теме
Комментарии
Автор

Professor Penn, thank you for a monster analysis on the Rational Points on a Circle.

georgesadler
Автор

this video feels like the Mecca of Dr. Penn's videos, it's where it all began, all the new viewers should come pay pilgrimage. also the editing involved in backflips AND blackboard changes, holy wow!!!

lexinwonderland
Автор

An easy way to see that there are rational points on the unit circle is to take Pythagorean triples (a, b, c), i.e. a² + b² = c². Then the points (±a/c, ±b/c) are on the unit circle.
Furthermore, if (x1, y1) and (x2, y2) are rational points on the unit circle, then so is (x1 x2 - y1 y2, x1 y2 + x2 y1).

mdperpe
Автор

bro nice watched you for a while but never seen your backflip era before

lukewaite
Автор

Finally I have found a video from pre-"and that's a good place to stop" era ;)

damianbla
Автор

Also, (I know this video is ancient, but) professor, could you do more videos like this but on elliptic curves? I know they tie in with group theory among other things that i want to study, but I would really like to see your explanation of the fundamentals so the connection with modular forms makes more sense. Thanks!

lexinwonderland
Автор

At 8:03, should we assume that a, b, c, d, and e are integers, or that they are rational?

waynemv
Автор

Can a quadratic curve also include mixed terms? ax² + bx + cxy + dy + ey² + f = 0

SpeedcoreDancecore
Автор

لقد أثبتتُ النظرية من اجل دائرة الوحدة باستعمال ثلاثيات فيثاغورس كما يلي:
ليكن a^2+b^2+=c^2، نعطي x=a/c وبالتالي y=sqrt(1--(a^2/c^2))=b/c
وبسبب وجود عدد لانهائي من ثلاثيات فيثاغورس فهناك عدد لانهائي من النقاط على دائرة الوحدة ذات الإحداثيات النسبية لكل من الفواصل والتراتيب

زكريا_حسناوي
Автор

Can a quadratic curve not have xy-terms?

gtdjpifvjkte
welcome to shbcf.ru