filmov
tv
Use Bezout's Identity to solve 2047x+147y=1

Показать описание
Bézout's Identity to find the answer to ax+by=gcd(a,b) .
2047x+147y=1.
The values (a,b)=1 coprime , using the equation ax+by=1.
Euclid's Algorithm finds the gcd( greatest common divisor ) .
Bezout's Identity uses reverse substitution.
#euclidsalgorithm
#algebra
#algebra2inequalities
#algebraticos
#mathematical
#euclid_division_algorithm
#mathstricks
#longdivisionmethod
#numbertheory
#numbertricks
2047x+147y=1.
The values (a,b)=1 coprime , using the equation ax+by=1.
Euclid's Algorithm finds the gcd( greatest common divisor ) .
Bezout's Identity uses reverse substitution.
#euclidsalgorithm
#algebra
#algebra2inequalities
#algebraticos
#mathematical
#euclid_division_algorithm
#mathstricks
#longdivisionmethod
#numbertheory
#numbertricks
Bézout's identity: ax+by=gcd(a,b)
Bezout's Identity to solve ax+by=1 (a,b) are coprime
Bezout's Identity
Bézout’s Theorem
How to Prove: Bezout's Identity
Number Theory: Bezout's Identity
Using Bézout's Lemma, Superquiz 2 Problem 7
3 Modular Arithmetic for Cryptography- Part 2: GCD, Bézout’s Identity, Extended Euclidean Algorithm...
Coefficients de Bezout
Using Euclidean algorithm to write gcd as linear combination
MAT 112: Bézouts Identity
GCD and Bezout Theorem | Math Olympiad, ISI, CMI Entrance | Number Theory
12.07 Bézout's Identity
Bézout's identity Proof
Finding the Inverse using Euclidean algorithm and Bézout coefficients (Part 2)
Extended Euclidean Algorithm Example
GCD, Bezout, and Modular Inverses | The Extended Euclidean Algorithm
One Step in a Proof of Bézout's Lemma, Superquiz 2 Problem 7
Bezout’s Identity for Integrs
BM10.1. The Euclidean Algorithm for the Integers
Bezout's Theorem
Example: Bezout Coefficients
John Voight: The Bezout identity and norms from a quadratic extension (NTWS 213)
Euclidean Algorithm and Bezout's Identity (CNCM Lecture)
Комментарии