filmov
tv
OWOS: Edouard Pauwels - 'Nonsmooth Implicit Differentiation for Optimization'
Показать описание
One World Optimization Seminar
OWOS
Mathematics
Numerical Optimization
Optimization
One World Optimization Seminar
Рекомендации по теме
0:59:28
OWOS: Edouard Pauwels - 'Nonsmooth Implicit Differentiation for Optimization'
0:02:05
Edouard Pauwels, médaille de bronze 2020
1:04:38
OWOS: Jérôme Bolte - 'Variational Model in Nonsmooth Automatic Differentiation & Deep Learn...
0:37:50
Edouard Pauwels: What does back propagation compute?
1:01:46
OWOS: Patrick Mehlitz - 'Optimization with Geometric Constraints: Asymptotic Stationarity and A...
1:10:15
OWOS: Terry Rockafellar -Augmented Lagrangians & Hidden Convexity in Conditions for Local Optima...
1:09:44
OWOS: Ernö Robert Csetnek - 'Second Order Dynamics with Closed-Loop Damping'
1:02:19
Active strict saddles in nonsmooth optimization
0:31:32
Xiaoqi Yang: Lipschitz-like property relative to a set and the generalized Mordukhovich criterion
1:01:35
OWOS: Volkan Cevher - 'Scalable Semidefinite Programming'
0:41:33
Simulating Granular Material using Nonsmooth Time Stepping and a Matrixfree ... | Jan Kleinert (DLR)
1:07:52
OWOS: Meisam Razaviyayn - 'Nonconvex Min-Max Optimization'
0:23:40
EE563 Convex Optimization - Duality: Geometric Interpretation
0:53:10
17Aug4 Tutte 100th; Professor Adrian Lewis
1:08:23
OWOS: Konstantin Mishchenko - 'Regularized Newton Method with Global O(1/k^2) Convergence'
0:54:32
Understanding and Mitigating Gradient Flow Pathologies in PINN by Paris Perdikaris
0:51:12
Hidden convexity in nonconvex optimization
1:02:44
Hedy Attouch: Lecture 3 on Dynamical Systems and Optimization
1:04:58
1W-MINDS: Holger Rauhut, July 9, 2020, Convergence of gradient flows for learning deep linear...
0:26:29
Series and Parallel Resistor Combination - [FR]
0:25:22
Augmented Lagrangian method in Ising machines
0:29:20
Stephane Gaubert: Tropical convexity and its relation with mean payoff games and linear
0:41:19
Autonomy Talks - Michael Muehlebach: Optimization with Momentum
0:52:52
Nik Nuesken: Stein geometry in machine learning: gradient flows, optimal transport, large deviations