filmov
tv
#48: Scikit-learn 45:Supervised Learning 23: Image augmentation in Python

Показать описание
The video discusses the intuition for image data augmentation followed by coding in Python.
Timeline
(Python 3.8)
[Note: There is a lag in video and audio.]
00:00 - Outline of video
00:29 - What is image data augmentation?
01:39 - Why do data augmentation?
01:51 - Example of image augmentation
02:42 - Open Jupyter notebook
03:15 - Create a custom image augmentation function: read image
07:54 - Create a custom image augmentation function: rotate image
10:36 - Create a custom image augmentation function: shear
11:42 - * * * Note: Video lags audio * * *
13:33 - Create a custom image augmentation function: wrap
15:00 - Create a custom image augmentation function: noise
15:52 - Create a custom image augmentation function: blur
16:40 - Create a custom image augmentation function: flip
17:17 - Create a custom image augmentation function: List of augmented images
18:10 - Create a custom image augmentation function: Lables for augmented images
18:40 - Plot augmented images
21:24 - Ending notes
Download data:
Code for image augment function:
Timeline
(Python 3.8)
[Note: There is a lag in video and audio.]
00:00 - Outline of video
00:29 - What is image data augmentation?
01:39 - Why do data augmentation?
01:51 - Example of image augmentation
02:42 - Open Jupyter notebook
03:15 - Create a custom image augmentation function: read image
07:54 - Create a custom image augmentation function: rotate image
10:36 - Create a custom image augmentation function: shear
11:42 - * * * Note: Video lags audio * * *
13:33 - Create a custom image augmentation function: wrap
15:00 - Create a custom image augmentation function: noise
15:52 - Create a custom image augmentation function: blur
16:40 - Create a custom image augmentation function: flip
17:17 - Create a custom image augmentation function: List of augmented images
18:10 - Create a custom image augmentation function: Lables for augmented images
18:40 - Plot augmented images
21:24 - Ending notes
Download data:
Code for image augment function:
#48: Scikit-learn 45:Supervised Learning 23: Image augmentation in Python
#73: Scikit-learn 70:Supervised Learning 48: Nearest Neighbor methods
#52: Scikit-learn 49:Supervised Learning 27: Robustness regression
Machine Learning in 2024 – Beginner's Course
My top 50 scikit-learn tips
#64: Scikit-learn 61:Supervised Learning 39: Project semi-conductor part classifier
Scikit-Learn Course - Machine Learning in Python Tutorial
PANDAS PYTHON Tutoriel Français - Time Series (18/30)
K-Means Clustering Explained for Beginners Using Python | Learn Machine Learning
Machine Learning Course | Machine Learning For Beginners | Intellipaat
🐍 Machine Learning Workflow: Custom Naive Bayes Algorithm for Classifying Imbalanced Data in Python...
How to build Simple Classifier using Scikit-learn | Machine Learning Tutorial | Codegnan
Machine Learning Full Course Learn Machine Learning Machine Learning Tutorial
Régression Logistique avec Python / scikit-learn - Sélection de variables RFE
Vehicle Detection using HOG and SVM
Practical Machine Learning by Example in Python
Machine Learning Complete Elite Course (projects with python included) | Beginner to Expert | CF IBM
Lecture 4 | Overfitting and SGD | Advanced Intro to Machine Learning
PyTorch for Deep Learning & Machine Learning – Full Course
Random Forest using Scikit-Learn
Do you know how AI tools transforming YouTube Growth, Businesses & Student's Careers ?
Joker #shortvideo #trending #ai
#80: Scikit-learn 77:Supervised Learning 55: Project: Chemometrics: Amylose in rice
Ensemble Learning in Machine Learning | Decision Tree & Random Forest | Machine Learning Tutori...
Комментарии