filmov
tv
Kalman Filter for Beginners, Part 2 - Estimation and Prediction Process & MATLAB Example

Показать описание
Use the Kalman Filter, even without knowing all the theory! In Part 2 of my three-part series, I discuss the prediction and estimation processes, making an analogy with low-pass filters. We construct a system model via the state transition matrix A, the state-to-measurement matrix H, and the process noise and measurement noise matrices, Q and R.
This special lecture series takes us into *dynamic* attitude estimation, using time-varying gyroscope data, as opposed to the previously covered *static* attitude estimation, which uses simultaneous measurements of known external objects.
► Next: Kalman Filter for Beginners, Part 3- Attitude Estimation, Gyro, Accelerometer, Velocity via Position
► Previous, Kalman Filter for Beginners, Part 1 - Recursive Filters & MATLAB Examples
► More lectures posted regularly
► Dr. Shane Ross 🌠 aerospace engineering professor, Virginia Tech
Background: Caltech PhD | worked at NASA/JPL & Boeing
Research website for @ProfessorRoss
► Follow me on Twitter
► Space Vehicle Dynamics course videos (playlist)
► Lecture notes for Kalman Filter series (PDF)
► MATLAB Code
► Reference
Kalman Filter for Beginners: with MATLAB Examples
by Phil Kim (Author), Lynn Huh (Translator), 2010
► Chapters
0:00 Recap
3:51 Estimation Step
8:00 Comparison with Low-Pass Filter
10:03 Error Covariance = Inaccuracy of Estimate
14:29 Prediction Step
17:34 How Prediction and Estimation Fit Together
21:44 The System Model
26:34 Covariance of the System Noise
31:30 MATLAB Simple Example
43:32 More Complicated Example
► Related Courses and Series Playlists by Dr. Ross
📚Space Vehicle Dynamics
📚3-Body Problem Orbital Dynamics Course
📚Space Manifolds
📚Lagrangian and 3D Rigid Body Dynamics
📚Nonlinear Dynamics and Chaos
📚Hamiltonian Dynamics
📚Center Manifolds, Normal Forms, and Bifurcations
Implement a Kalman filter for dummies Visually Explained tutorial MATLAB aerospace attitude estimation sensor fusion mathematics recursion orbital mechanics three body problem Lagrange Point space CR3BP 3 Manifolds James Webb Nonlinear Dynamics gravity Travel Superhighway Interplanetary Highway gravitational dynamical Astronomy astronomy wormhole physics chaos unstable Periodic Orbits Saddle Critical Halo Libration Low Energy Virginia Tech Caltech JPL Lyapunov Celestial Mechanics Hamiltonian planets moons multibody Gateway Station Lunar L1 Arches Of cislunar orbital celestial Chaotician Boeing Jet Propulsion Lab Centaurs Asteroids Comets Trojan Jupiter Family Hildas quasi Kuiper Belt
#kalmanfilter #MATLAB #lowpass #mathematics #recursion #orbitalmechanics #threebodyproblem #LagrangePoint #space #CR3BP #3body #3bodyproblem #SpaceManifolds #JamesWebb #NonlinearDynamics #gravity #SpaceTravel #SpaceManifold #DynamicalSystems #JamesWebbSpaceTelescope #solarSystem #NASA #dynamics #celestial #SpaceSuperhighway #InterplanetarySuperhighway #spaceHighway #gravitational #dynamicalAstronomy #astronomy #wormhole #physics #chaos #unstable #PeriodicOrbits #SaddlePoint #CriticalPoint #Halo #HaloOrbit #LibrationPoint #LagrangianPoint #LowEnergy #VirginiaTech #Caltech #JPL #LyapunovOrbit #CelestialMechanics #HamiltonianDynamics #planets #moons #multibody #GatewayStation #LunarGateway #L1gateway #ArchesOfChaos #cislunar #cislunarspace #orbitalDynamics #orbitalMechanics #celestialChaos #Chaotician #Boeing #JetPropulsionLab #Centaurs #Asteroids #Comets #TrojanAsteroid #Jupiter #JupiterFamily #JupiterFamilyComets #Hildas #quasiHildas #KuiperBelt
This special lecture series takes us into *dynamic* attitude estimation, using time-varying gyroscope data, as opposed to the previously covered *static* attitude estimation, which uses simultaneous measurements of known external objects.
► Next: Kalman Filter for Beginners, Part 3- Attitude Estimation, Gyro, Accelerometer, Velocity via Position
► Previous, Kalman Filter for Beginners, Part 1 - Recursive Filters & MATLAB Examples
► More lectures posted regularly
► Dr. Shane Ross 🌠 aerospace engineering professor, Virginia Tech
Background: Caltech PhD | worked at NASA/JPL & Boeing
Research website for @ProfessorRoss
► Follow me on Twitter
► Space Vehicle Dynamics course videos (playlist)
► Lecture notes for Kalman Filter series (PDF)
► MATLAB Code
► Reference
Kalman Filter for Beginners: with MATLAB Examples
by Phil Kim (Author), Lynn Huh (Translator), 2010
► Chapters
0:00 Recap
3:51 Estimation Step
8:00 Comparison with Low-Pass Filter
10:03 Error Covariance = Inaccuracy of Estimate
14:29 Prediction Step
17:34 How Prediction and Estimation Fit Together
21:44 The System Model
26:34 Covariance of the System Noise
31:30 MATLAB Simple Example
43:32 More Complicated Example
► Related Courses and Series Playlists by Dr. Ross
📚Space Vehicle Dynamics
📚3-Body Problem Orbital Dynamics Course
📚Space Manifolds
📚Lagrangian and 3D Rigid Body Dynamics
📚Nonlinear Dynamics and Chaos
📚Hamiltonian Dynamics
📚Center Manifolds, Normal Forms, and Bifurcations
Implement a Kalman filter for dummies Visually Explained tutorial MATLAB aerospace attitude estimation sensor fusion mathematics recursion orbital mechanics three body problem Lagrange Point space CR3BP 3 Manifolds James Webb Nonlinear Dynamics gravity Travel Superhighway Interplanetary Highway gravitational dynamical Astronomy astronomy wormhole physics chaos unstable Periodic Orbits Saddle Critical Halo Libration Low Energy Virginia Tech Caltech JPL Lyapunov Celestial Mechanics Hamiltonian planets moons multibody Gateway Station Lunar L1 Arches Of cislunar orbital celestial Chaotician Boeing Jet Propulsion Lab Centaurs Asteroids Comets Trojan Jupiter Family Hildas quasi Kuiper Belt
#kalmanfilter #MATLAB #lowpass #mathematics #recursion #orbitalmechanics #threebodyproblem #LagrangePoint #space #CR3BP #3body #3bodyproblem #SpaceManifolds #JamesWebb #NonlinearDynamics #gravity #SpaceTravel #SpaceManifold #DynamicalSystems #JamesWebbSpaceTelescope #solarSystem #NASA #dynamics #celestial #SpaceSuperhighway #InterplanetarySuperhighway #spaceHighway #gravitational #dynamicalAstronomy #astronomy #wormhole #physics #chaos #unstable #PeriodicOrbits #SaddlePoint #CriticalPoint #Halo #HaloOrbit #LibrationPoint #LagrangianPoint #LowEnergy #VirginiaTech #Caltech #JPL #LyapunovOrbit #CelestialMechanics #HamiltonianDynamics #planets #moons #multibody #GatewayStation #LunarGateway #L1gateway #ArchesOfChaos #cislunar #cislunarspace #orbitalDynamics #orbitalMechanics #celestialChaos #Chaotician #Boeing #JetPropulsionLab #Centaurs #Asteroids #Comets #TrojanAsteroid #Jupiter #JupiterFamily #JupiterFamilyComets #Hildas #quasiHildas #KuiperBelt
Комментарии