Find the radius of the circle | Geometry Question | Important Geometry And Algebra Skills Explained

preview_player
Показать описание
Find the radius of the circle | Geometry Question | Important Geometry And Algebra Skills Explained

Join this channel to get access to perks:

MEMBERS OF THIS CHANNEL
••••••••••••••••••••••••••••••••••••••••
Mr. Gnome
Sambasivam Sathyamoorthy
ஆத்தங்கரை சண்முகம்
Εκπαιδευτήρια Καντά
AR Knowledge
堤修一
Sidnei Medeiros Vicente
Mark Ludington
Saunak Swar
Grace Cooper
Nicholas Garcia
Ben Stone
Karlo Karbs
Рекомендации по теме
Комментарии
Автор

Thank you for solving it. Hello from Baku Azerbaijan🇦🇿

elmurazbsirov
Автор

We extend BC which intersects circle in to point E and DC intersecting circle in to point F.From intersecting chords theorem we get BC•CE=CD•CF so 6•a=8•4 so CE=a=32/6=16/3.The inscribed angle ABE is right so the hypotenuse AE is diameter of circle and AE=2•r. Applying Pythag. Theorem into ABE Right Triangle AE^2=AB^2+BE^2.So (2r)^2=4^2+(6+16/3)^2 so 4•r^2=16+(34/3)^2 so 4•r^2=144/9+1156/9 so 4•r^2=1300/9 so r^2=1300/(9•4)=1300/36 hence r=(√1300)/6= 10•√13/6=5•√13/3.

sarantiskalaitzis
Автор

Distance between chord 4 and segment 8, is 6 cm.

Taking the appropriate right triangle:
(4/2)² + (6-x)²=R²
and
(8-2)²+x²=R²
Equalling:
(4/2)² + (6-x)²=(8-2)²+x²
2²+(6²-12x+x²)=6²+x²
4=12x
x = 1/3 cm

R² = 6² + x²
R² = 36 + 1/9
R = 6, 01 cm ( Solved √ )

mariorossi