Ensuring Data Quality in Apache Spark | Best Practices for High Quality Data #interview #question

preview_player
Показать описание

I have trained over 20,000+ professionals in the field of Data Engineering in the last 5 years.

Most commonly asked interview questions when you are applying for any data based roles such as data analyst, data engineer, data scientist or data manager.

Link of Free SQL & Python series developed by me are given below -

Don't miss out - Subscribe to the channel for more such informative interviews and unlock the secrets to success in this thriving field!

Social Media Links :

Tags
#mockinterview #bigdata #career #dataengineering #data #datascience #dataanalysis #productbasedcompanies #interviewquestions #apachespark #google #interview #faang #companies #amazon #walmart #flipkart #microsoft #azure #databricks #jobs
Рекомендации по теме
Комментарии
Автор

1. duplicate check
2. null or empty check
3. schema validation
4. column level validation - like we should give the range of values that column should get.
5. source and target row count validation with watermark or audit tables.
6. incremental data check - like we should get only the data after the last processed time present in the metadata/audit tables

naveenammeejuri