filmov
tv
NASA X: MEDLI (Mars Entrey, Descent & Landing) and Mars Curiosity Rover

Показать описание
Pulley: Coming up on this episode of NASA x, we will find out about the challenges of edl, as we follow the MEDLI team in their quest to improve Our understanding of entry descent and landing. we will follow them from some early setbacks and design challenges, all the way through to the triumphant night that curiosity landed on mars. In this small clean room at NASA langley, researchers are lovingly and carefully Putting the finishing touches on this device that is part of MEDLI, or the mars science laboratory entry, descent, and landing, instrumentation. this very device will eventually meet a fiery end more than 350 million miles away on the surface of mars. for most of us, the idea of our hard work ending up battered and destroyed so far from home wouldn't sit well, but this team is okay with the end result, because once MEDLI completes its job, our knowledge of how to land on mars will have increased dramatically. Mars is a curious place. with our modern tools we have a much better understanding of the planet, but attempting to understand mars has long been a pastime for both early humans and for us today.
Pulley:Observers from around the world have long viewed it with awe, seeing its red color As being both ominous and also a symbol of strength. the name we use today for mars comes from the roman god of battle, but the romans were not the only culture who noticed mars. ancient egyptian observers admired the planet so much that today's capital cairo comes from the ancient arabic word for mars, "al qahira." most early cultures considered mars to be aggressive or evil due to its red color, and each mission we've sent to mars has done little to dispel this perception. in addition to its cold and barren landscape, it is incredibly difficult to safely land spacecraft there. in fact, out of the first 41 mission to mars, only 15 were successful. even though difficult, when missions are successful, they provide immense amounts of data that can be used to further our knowledge for years to come. One of the most successful early NASA programs was the mars viking missions in 1976. that mission landed two stationary landers on the surface of mars, and although they were only scheduled to last for 90 days, the landers transmitted data for several years, prompting one NASA observe to say, "we found intelligent life on mars, and it was us." other missions followed-- some successful, some not-- but with each mission, our knowledge and experience delivering vehicles to mars increased significantly. Building on both the successes and failures of the past, NASA decided to send the most complex and technologically advanced mission that had ever been sent to mars, called the mars science laboratory, or the curiosity rover. the size of a small car, this rover has enough scientific firepower to unlock many of the mysteries of mars in ways we could only have dreamed of a few years ago. but getting the curiosity rover there would be tough. this vehicle is much bigger than anything we have ever tried To land on mars before. the rovers and landers of the past were all relatively small, so with minimal changes, researchers could generally fit each new payload into a similar shaped aeroshell and use an existing thermal protection system. because these factors didn't change much, researchers had a known commodity and could plan accordingly. curiosity is different. it is by far the largest and most capable rover to ever land on mars, and researchers had to completely rewrite many of the "how to land on mars" books.