filmov
tv
Nonlinear Systems: Fixed Points, Linearization, & Stability
Показать описание
► *MISTAKE* at 3:05, it should be f(x* + u, y* + v)
► For background, see
► From 'Nonlinear Dynamics and Chaos' (online course).
► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
► Follow me on Twitter
► Make your own phase portrait
► For more about hyperbolic vs. non-hyperbolic fixed points in N-dimensional systems
► Course lecture notes (PDF)
Reference: Steven Strogatz, "Nonlinear Dynamics and Chaos", Chapter 6: Phase Plane
► Courses and Playlists by Dr. Ross
📚Attitude Dynamics and Control
📚Nonlinear Dynamics and Chaos
📚Hamiltonian Dynamics
📚Three-Body Problem Orbital Mechanics
📚Lagrangian and 3D Rigid Body Dynamics
📚Center Manifolds, Normal Forms, and Bifurcations
autonomous on the plane phase plane are introduced 2D ordinary differential equations 2d ODE vector field topology cylinder bifurcation robustness fragility cusp unfolding perturbations structural stability emergence critical point critical slowing down supercritical bifurcation subcritical bifurcations buckling beam model change of stability nonlinear dynamics dynamical systems differential equations dimensions phase space Poincare Strogatz graphical method Fixed Point Equilibrium Equilibria Stability Stable Point Unstable Point Linear Stability Analysis Vector Field Two-Dimensional 2-dimensional Functions
#NonlinearDynamics #DynamicalSystems #FixedPoint #DifferentialEquations #Bifurcation #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CuspBifurcation #CriticalPoint #buckling #PitchforkBifurcation #robust #StructuralStability #DifferentialEquations #dynamics #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Poincare #Strogatz #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #NonlinearODEs #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions
Комментарии