filmov
tv
MH4510 Lecture 2 part 7 - log-odds transformation
Показать описание
Origins of logistic regression: linear decision boundary, log-odds and logistic sigmoid function
Fedor Duzhin
Рекомендации по теме
0:09:04
MH4510 Lecture 2 part 7 - log-odds transformation
0:05:18
MH4510 Lecture 7 - part 2: Logistic regression, gradient descent
0:07:11
MH4510 Lecture 2 part 6 - gradient descent for linear regression
0:08:06
Cosine Theta with Vectors 2
0:03:22
Separating Hyperplane Theorem Proof Practice: Example #3
0:03:32
MH4510 Data Mining - Lecture 1 part 7 - Bayes classifier
0:05:08
MH4510 Lecture 7 - part 7: fully connected feed-forward neural networks
0:01:54
MH4510 Lecture 2 part 0 - overview
0:11:17
MH4510 Lecture 10 part 7 - worked example of apriori for association rules
0:11:57
MH4510 Lecture 7 - part 9: gradient descent and optimizers for gradient descent
0:07:06
MH4510 Lecture 3 part 2 - validation set approach to estimate test error
0:19:47
iste780day19 unsuper
0:07:16
MH4510 Lecture 7 - part 4: Motivation for neural networks
0:11:01
MH4510 Lecture 4 part 7 - ridge vs LASSO
0:05:18
MH4510 Lecture 7 - part 6: forward-propagation
0:10:58
MH4510 Lecture 7 - part 5: fully connected architecture
0:25:12
MH4510 Lecture 2 part 2 - computing linear regression
1:18:27
IBA: Intro to AI - Lecture 27 - Machine Learning - KNN, Parametric Models, Logistic Regression, SVM
0:02:15
MH4510 Lecture 8 part 0 - Intro
0:13:02
MH4510 Lecture 6 part 7 - kernel trick and support vector machine
0:20:41
Separating Hyperplanes
0:04:55
MH4510 Data Mining - Lecture 1 part 2 - supervised vs unsupervised learning
0:10:41
Neural Network from scratch - Part 2 (Forward Propagation)
0:05:34
MH4510 Lecture 9 part 6 - gradient of GloVe loss