Minimum Total Distance Traveled | Leetcode 2463 | DP | RECURSION | Hard | Java | Developer Coder

preview_player
Показать описание
🎥 Welcome to Developer Coder!
In this video, we will dive into the LeetCode problem Minimum Total Distance Traveled | Leetcode 2463. This problem challenges us with dynamic programming and recursion techniques to find the optimal solution. Join me as we explore the problem step-by-step using Java.

✨ What You Will Learn:

Dynamic Programming strategies
Recursive approaches
Efficient coding techniques in Java
Tips for tackling hard LeetCode problems
🔔 Don't forget to subscribe for more content focused on coding challenges and algorithm solutions!

#LeetCode2463 #MinimumTotalDistanceTraveled #Google #Microsoft #Apple #Amazon #Facebook #IBM #Oracle #Cisco #Intel #Dell #HP #Adobe #Salesforce #SAP #NVIDIA #Tencent #Alibaba #Sony #Netflix #Baidu #Xiaomi #Qualcomm #VMware #Twitter #Fujitsu #Lenovo #Infosys #Capgemini #Accenture #LeetCode #DynamicProgramming #Recursion #Java #CodingChallenges #TechInterviews #ProblemSolving #SoftwareDevelopment #Algorithm #DataStructures #JavaProgramming #DeveloperCoder #HardProblems #CodingTutorials #JavaCode #DifficultProblems #LearnToCode #CodeNewbie

Minimum Total Distance Traveled LeetCode
LeetCode 2463 solution
Dynamic programming problems
Recursion in Java
Java coding challenges
LeetCode hard problems
Optimal solutions in Java
Dynamic programming explained
Recursion examples in Java
How to solve LeetCode problems
Minimum Total Distance Traveled explanation
LeetCode dynamic programming
Java algorithm tutorials
Coding interview questions
LeetCode recursion problems
Dynamic programming strategies
Java solutions for LeetCode
Problem solving techniques in coding
Dynamic programming practice
Java recursion challenges
Tech interview prep LeetCode
Software engineering problems
Dynamic programming concepts
LeetCode problem-solving strategies
Recursion and backtracking
Dynamic programming vs recursion
Understanding dynamic programming
Hard LeetCode problems explained
Efficient coding in Java
Java algorithms for interviews
Top dynamic programming problems
Recursion depth-first search
LeetCode algorithm challenges
Best practices for LeetCode
LeetCode tutorial series
Understanding recursion in programming
Java coding interview prep
LeetCode tips and tricks
Solving complex coding problems
Minimum Total Distance Traveled LeetCode explanation
Dynamic programming interview questions
Advanced coding techniques
Java development tutorials
Data structures for dynamic programming
Java performance optimization
LeetCode practice problems
Dynamic programming for beginners
Minimum Total Distance Traveled Java solution
LeetCode coding challenge tips
Recursion vs iteration
How to approach LeetCode problems
Java code walkthrough
Dynamic programming use cases
LeetCode coding strategies
Minimum Total Distance Traveled algorithm
Recursion in depth
Dynamic programming examples in Java
Best coding practices for LeetCode
Problem-solving frameworks
LeetCode challenges overview
Recursion techniques in Java
Dynamic programming patterns
Understanding hard problems on LeetCode
Java interview coding problems
Minimum Total Distance Traveled coding challenge
Dynamic programming challenges for developers
LeetCode recursion strategies
Java coding skills improvement
Minimum Total Distance Traveled problem-solving
Рекомендации по теме
Комментарии
Автор

Recursion+Memo


class Solution {
public long robot, int[][] factory) {
Collections.sort(robot);
Arrays.sort(factory, Comparator.comparingInt(a -> a[0]));
List<Integer> factoryPositions = new ArrayList<>();
for(int[] f : factory ){
for(int i=0;i<f[1];i++){
factoryPositions.add(f[0]);
}
}
int robotCount = robot.size();
int factoryCount = factoryPositions.size();
long[][] memo = new
for(long[] row: memo){
Arrays.fill(row, -1);
}
return calculateMinDistance(0, 0, robot, factoryPositions, memo);
}
private long calculateMinDistance(int robotIdx, int factoryIdx, List<Integer> robot, List<Integer> factoryPositions, long[][] memo ){
//All robots assigned
if(robotIdx == robot.size()) return 0;
//No factories left to assign
if(factoryIdx == factoryPositions.size()) return (long) 1e12;
//check memo
if(memo[robotIdx][factoryIdx] != -1){
return memo[robotIdx][factoryIdx];
}

//option:1 assign current robot to current factory
long assign = Math.abs(robot.get(robotIdx) - + calculateMinDistance(robotIdx+1, factoryIdx+1, robot, factoryPositions, memo);

//option:2 Skip current factory for the current robot
long skip = calculateMinDistance(robotIdx, factoryIdx + 1, robot, factoryPositions, memo);

memo[robotIdx][factoryIdx] = Math.min(assign, skip);
return memo[robotIdx][factoryIdx];
}
}

DeveloperCoder
Автор

DP:

class Solution {
public long robot, int[][] factory) {
Collections.sort(robot);
Arrays.sort(factory, Comparator.comparingInt(a -> a[0]));
List<Integer> factoryPositions = new ArrayList<>();
for (int[] f : factory) {
for (int i = 0; i < f[1]; i++) {
factoryPositions.add(f[0]);
}
}
int robotCount = robot.size();
int factoryCount = factoryPositions.size();

long[] next = new long[factoryCount+1];
long[] current = new long[factoryCount+1];

for( int i=robotCount -1;i>=0;i--){
//no factories left case
if(i!= robotCount -1 ) next[factoryCount] = (long) 1e12;
current[factoryCount] = (long) 1e12;
for(int j = factoryCount -1 ;j>=0;j--){
//assign current robot to current factory
long assign = Math.abs((long) robot.get(i) - factoryPositions.get(j)) + next[j+1];
//skip current factory for this robot
long skip = current[j+1];
//take the min option
current[j] = Math.min(assign, skip);
}
System.arraycopy(current, 0, next, 0, factoryCount+1);
}
return current[0];

}
}

DeveloperCoder
Автор

can you provide the code
for both approaches

arihantsinghrana