filmov
tv
Stability of Periodic Orbits | Floquet Theory | Stable & Unstable Invariant Manifolds | Lecture 21
![preview_player](https://i.ytimg.com/vi/veJJ6EiiOeo/maxresdefault.jpg)
Показать описание
Lecture 21, course on Hamiltonian and nonlinear dynamics. Stability of periodic orbits and invariant manifolds. The monodromy matrix, M, is the state transition matrix for one period T of a periodic orbit, obtained from integrating the variational equations related to the Jacobian of the vector field. The monodromy matrix is the linearized approximation of the nonlinear Poincare map near a periodic orbit and the eigenvalues are Floquet multipliers (characteristic multipliers). For a Hamiltonian system, the monodromy matrix M is a symplectic matrix, which puts constraints on the eigenspectrum. Eigenvalues outside the unit circle correspond to unstable manifolds.
► Next: Chaos in Hamiltonian Systems | Separatrix Splitting and Turnstile Lobe Dynamics | Homoclinic Tangle
► Previous, Dynamics of Driven Damped Nonlinear Oscillators | From Analytical and Geometrical Points of View
► Simpler introduction to limit cycles (special type of periodic orbit)
► Advanced Dynamics - Hamiltonian Systems and Nonlinear Dynamics
► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
► Follow me on Twitter
► See the entire playlist for the course:
Advanced Dynamics - Hamiltonian Systems and Nonlinear Dynamics
► Continuation of this course on a related topic
Center manifolds, normal forms, and bifurcations
► Course lecture notes (PDF)
► Course lecture notes (OneNote)
► Chapters
0:00 State transition matrix introduction
2:57 State transition matrix for periodic orbit (monodromy matrix)
12:25 Stability of the periodic orbit from monodromy matrix eigenvalues
16:30 Floquet multipliers, characteristic multipliers
29:33 Example scenarios in 3D
47:11 Saddle-type periodic orbit with stable and unstable manifolds
49:04 Periodic orbits in Hamiltonian systems
59:33 Example scenarios for 3 degrees of freedom (6D phase space)
1:04:41 Chaos in Hamiltonian systems, introduction via Duffing system
Lecture 2020-04-30
Part of a graduate level course:
Advanced Dynamics (ESM/AOE 6314)
Spring Semester, 2020
#NonlinearDynamics #DynamicalSystems #PeriodicOrbit #stability #manifolds #Floquet #FloquetTheory #InvariantManifolds #UnstableManifolds #StableManifolds #FloquetMultipliers #LimitCycle #Poincare #PoincareMap #Monodromy #MonodromyMatrix
► Next: Chaos in Hamiltonian Systems | Separatrix Splitting and Turnstile Lobe Dynamics | Homoclinic Tangle
► Previous, Dynamics of Driven Damped Nonlinear Oscillators | From Analytical and Geometrical Points of View
► Simpler introduction to limit cycles (special type of periodic orbit)
► Advanced Dynamics - Hamiltonian Systems and Nonlinear Dynamics
► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
► Follow me on Twitter
► See the entire playlist for the course:
Advanced Dynamics - Hamiltonian Systems and Nonlinear Dynamics
► Continuation of this course on a related topic
Center manifolds, normal forms, and bifurcations
► Course lecture notes (PDF)
► Course lecture notes (OneNote)
► Chapters
0:00 State transition matrix introduction
2:57 State transition matrix for periodic orbit (monodromy matrix)
12:25 Stability of the periodic orbit from monodromy matrix eigenvalues
16:30 Floquet multipliers, characteristic multipliers
29:33 Example scenarios in 3D
47:11 Saddle-type periodic orbit with stable and unstable manifolds
49:04 Periodic orbits in Hamiltonian systems
59:33 Example scenarios for 3 degrees of freedom (6D phase space)
1:04:41 Chaos in Hamiltonian systems, introduction via Duffing system
Lecture 2020-04-30
Part of a graduate level course:
Advanced Dynamics (ESM/AOE 6314)
Spring Semester, 2020
#NonlinearDynamics #DynamicalSystems #PeriodicOrbit #stability #manifolds #Floquet #FloquetTheory #InvariantManifolds #UnstableManifolds #StableManifolds #FloquetMultipliers #LimitCycle #Poincare #PoincareMap #Monodromy #MonodromyMatrix
Комментарии