filmov
tv
Graph SAGE - Inductive Representation Learning on Large Graphs | GNN Paper Explained
Показать описание
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
In this video, I do a deep dive into the Graph SAGE paper!
The first paper that started pushing the usage of GNNs for super large graphs.
You'll learn about:
✔️All the nitty-gritty details behind Graph SAGE
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⌚️ Timetable:
00:00 Intro
00:38 Problems with previous methods
04:30 High-level overview of the method
06:10 Some notes on the related work
07:13 Pseudo-code explanation
12:03 How do we train Graph SAGE?
15:40 Note on the neighborhood function
17:40 Aggregator functions
23:30 Results
28:00 Expressiveness of Graph SAGE
30:10 Mini-batch version
35:30 Problems with graph embedding methods (drift)
40:30 Comparison with GCN and GAT
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
💰 BECOME A PATREON OF THE AI EPIPHANY ❤️
If these videos, GitHub projects, and blogs help you,
consider helping me out by supporting me on Patreon!
One-time donation:
Much love! ❤️
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
💡 The AI Epiphany is a channel dedicated to simplifying the field of AI using creative visualizations and in general, a stronger focus on geometrical and visual intuition, rather than the algebraic and numerical "intuition".
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
👋 CONNECT WITH ME ON SOCIAL
👨👩👧👦 JOIN OUR DISCORD COMMUNITY:
📢 SUBSCRIBE TO MY MONTHLY AI NEWSLETTER:
💻 FOLLOW ME ON GITHUB FOR COOL PROJECTS:
📚 FOLLOW ME ON MEDIUM:
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#graphsage #gnns #graphtheory
In this video, I do a deep dive into the Graph SAGE paper!
The first paper that started pushing the usage of GNNs for super large graphs.
You'll learn about:
✔️All the nitty-gritty details behind Graph SAGE
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⌚️ Timetable:
00:00 Intro
00:38 Problems with previous methods
04:30 High-level overview of the method
06:10 Some notes on the related work
07:13 Pseudo-code explanation
12:03 How do we train Graph SAGE?
15:40 Note on the neighborhood function
17:40 Aggregator functions
23:30 Results
28:00 Expressiveness of Graph SAGE
30:10 Mini-batch version
35:30 Problems with graph embedding methods (drift)
40:30 Comparison with GCN and GAT
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
💰 BECOME A PATREON OF THE AI EPIPHANY ❤️
If these videos, GitHub projects, and blogs help you,
consider helping me out by supporting me on Patreon!
One-time donation:
Much love! ❤️
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
💡 The AI Epiphany is a channel dedicated to simplifying the field of AI using creative visualizations and in general, a stronger focus on geometrical and visual intuition, rather than the algebraic and numerical "intuition".
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
👋 CONNECT WITH ME ON SOCIAL
👨👩👧👦 JOIN OUR DISCORD COMMUNITY:
📢 SUBSCRIBE TO MY MONTHLY AI NEWSLETTER:
💻 FOLLOW ME ON GITHUB FOR COOL PROJECTS:
📚 FOLLOW ME ON MEDIUM:
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#graphsage #gnns #graphtheory
Комментарии