filmov
tv
Panel: Quantum Theory and Free Will - Chris Fields, Henry Stapp & Donald Hoffman
Показать описание
Quantum theory incorporates two seemingly-contradictory ideas about free will. On the one hand, an observer can choose both the system to measure and the kind of measurement to make; given these choices, the theory predicts a probability distribution over the
possible outcomes and nothing more. is is "quantum indeterminism." On the other hand, a system that no one is looking at evolves through time according the dynamics that are perfectly deterministic. No one is "looking at" the universe as a whole - all observers are inside the universe by definition - so the time evolution of the whole universe must be perfectly deterministic. This clash between indeterminism and determinism is sharpened by the existence of a strong theorem, the Conway-Kochen "free will theorem," that says that if human (or any other kind of) observers are assumed to have free will, everything
else in the universe, even electrons, has to be assumed to have free will, too. Is this conflict real, or might it dissolve on further analysis? This panel will examine some of the strikingly different views advanced by physicists on this question, illuminating the concept and role of entanglement in the process."
Dr. Chris Fields is an independent scientist interested in both the physics and the cognitive neuroscience underlying the human perception of objects as spatially and temporally bounded entities. His particular interests include quantum information theory and quantum computing on the one hand, and creative problem solving, early childhood development and autism-spectrum conditions on the other. His recent papers have appeared in the International Journal of Theoretical Physics, Information, International Journal of General Systems, Advances in Cognitive Psychology, Frontiers in Perception Science and Medical Hypotheses among others. He is currently editing a Research Topic titled “How humans recognize objects: Segmentation, categorization and individual identification” for Frontiers in Perception Science.
Donald Hoffman is a cognitive scientist and author of more than 90 scientific papers and three books, including Visual Intelligence: How We Create What We See (W.W. Norton, 2000). He received his BA from UCLA in Quantitative Psychology and his Ph.D. from MIT in Computational Psychology. He joined the faculty of UC Irvine in 1983, where he is now a full professor in the departments of cognitive science, computer science and philosophy. He received a Distinguished Scientific Award of the American Psychological Association for early career research into visual perception, and the Troland Research Award of the US National Academy of Sciences for his research on the relationship of consciousness and the physical world.
Henry Stapp received his Ph.D. in particle physics at the University of California, Berkeley, under the supervision of Nobel Laureates Emilio Segrè and Owen Chamberlain. Wolfgang Pauli visited Berkeley in the spring of 1958. He talked extensively with Stapp, and invited him to work with him in Zurich in the Fall. Stapp worked in Zurich with Pauli on fundamental problems until Pauli sudden unexpected death in December. In 1970 Werner Heisenberg invited Stapp to Munich, where the two conversed often on fundamental issues surrounding quantum mechanics. After returning to Berkeley wrote an influential article The Copenhagen Interpretation, published in the American Journal of Physics with Heisenberg’s comments appearing in an Appendix. Stapp has has made major contributions to analytic S-matrix theory, generalizations of Bell’s theorems, and understanding the quantum connection of mind to physical processes.
possible outcomes and nothing more. is is "quantum indeterminism." On the other hand, a system that no one is looking at evolves through time according the dynamics that are perfectly deterministic. No one is "looking at" the universe as a whole - all observers are inside the universe by definition - so the time evolution of the whole universe must be perfectly deterministic. This clash between indeterminism and determinism is sharpened by the existence of a strong theorem, the Conway-Kochen "free will theorem," that says that if human (or any other kind of) observers are assumed to have free will, everything
else in the universe, even electrons, has to be assumed to have free will, too. Is this conflict real, or might it dissolve on further analysis? This panel will examine some of the strikingly different views advanced by physicists on this question, illuminating the concept and role of entanglement in the process."
Dr. Chris Fields is an independent scientist interested in both the physics and the cognitive neuroscience underlying the human perception of objects as spatially and temporally bounded entities. His particular interests include quantum information theory and quantum computing on the one hand, and creative problem solving, early childhood development and autism-spectrum conditions on the other. His recent papers have appeared in the International Journal of Theoretical Physics, Information, International Journal of General Systems, Advances in Cognitive Psychology, Frontiers in Perception Science and Medical Hypotheses among others. He is currently editing a Research Topic titled “How humans recognize objects: Segmentation, categorization and individual identification” for Frontiers in Perception Science.
Donald Hoffman is a cognitive scientist and author of more than 90 scientific papers and three books, including Visual Intelligence: How We Create What We See (W.W. Norton, 2000). He received his BA from UCLA in Quantitative Psychology and his Ph.D. from MIT in Computational Psychology. He joined the faculty of UC Irvine in 1983, where he is now a full professor in the departments of cognitive science, computer science and philosophy. He received a Distinguished Scientific Award of the American Psychological Association for early career research into visual perception, and the Troland Research Award of the US National Academy of Sciences for his research on the relationship of consciousness and the physical world.
Henry Stapp received his Ph.D. in particle physics at the University of California, Berkeley, under the supervision of Nobel Laureates Emilio Segrè and Owen Chamberlain. Wolfgang Pauli visited Berkeley in the spring of 1958. He talked extensively with Stapp, and invited him to work with him in Zurich in the Fall. Stapp worked in Zurich with Pauli on fundamental problems until Pauli sudden unexpected death in December. In 1970 Werner Heisenberg invited Stapp to Munich, where the two conversed often on fundamental issues surrounding quantum mechanics. After returning to Berkeley wrote an influential article The Copenhagen Interpretation, published in the American Journal of Physics with Heisenberg’s comments appearing in an Appendix. Stapp has has made major contributions to analytic S-matrix theory, generalizations of Bell’s theorems, and understanding the quantum connection of mind to physical processes.
Комментарии