Show f(z) = √|xy| is not analytic at origin although the C-R equations are satisfied at that point.

preview_player
Показать описание
Complex Analysis Theorem from Analytic function
Statement/Theorem /Prove that :-

Show that the function f(z) = sqrt(|xy|) or √|xy| is not analytic at the origin although the Cauchy-Riemann equations are satisfied at that point.

Solution.
Let f(z) = u(x, y) + iv(x, y) =√|xy|
Here

u(x,y)= √|xy| and v(x,y)=0

At the origin zₒ=(0,0),
(∂u/∂x) = lim ₓ→ₒ {u(x, 0) - u(0, 0)}/x
⇒ (∂u/∂x)= (0 - 0)/x
⇒(∂u/∂x) = 0

and

(∂v/∂y) = lim ᵧ→ₒ {v(0, y) - v(0, 0)}/y
⇒(∂v/∂y)= (0 - 0)/y
⇒(∂v/∂y) = 0

Here ,
∵(∂u/∂x) = 0 and (∂v/∂y) = 0
∴(∂u/∂x) = (∂v/∂y)
Hence Cauchy-Riemann equations are satisfied at the origin zₒ=(0,0).

Now by property of differentiability...

f'(0)=lim z→o {f(z)-f(0)}/z
⇒f'(0)=lim z→o {√|xy|-0}/(x+iy)
⇒f'(0)=lim z→o √|xy|/(x+iy)
Now let a line y=mx, z→o we get

⇒f'(0)=lim z→o √|mx²|/(x+imx)
Simplify
⇒f'(0)=lim z→o √|m|/(1+im)
Here f'(0) is dependent on slop m thus the limit is not unique

∴ differentiability is not exist so that f(z) is not Analytic function at the origin zₒ=(0,0).

Hence Proved...!!!
.
.
.
.
.
.
.
.
Kindly join us for CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship and Lecturer-ship COMMON SYLLABUS FOR PART 'B' AND 'C' MATHEMATICAL SCIENCE
.
.
.
.
.
All BSc, B.Tech, MSc, MA Mathematics students join with us A great platform to get knowledge in Mathematics and science... Stay tuned....for detailed videos on whole SYLLABUS with topic wise...
.
.
.
.
.
.
.
#complexanalysis #csirnet #analyticfunction
.
Videos links 🔥🔥🔥

Play List ( Complex Analysis)

Рекомендации по теме
Комментарии
Автор

Sir ji ap khud practice kr rha ya samjah rha hai students ko

lilajyoti
Автор

Intro dekhke ko to laga sir horror movie dikhane wale h

Nightmarenarratives
Автор

Sir ye formula kab aaye kab lagana hai ye kaise pata chalega

Mridulmishra
Автор

Cauchy reimann eqn necessary condition hai lekin sufficient
condition nhi hote hai analytic proof krne k liye isme CR eqn satisfy toh hore hai lekin necessary condition ka ky wo hote hai ki jo partial derivatives hai wo b toh continuous hone chaeye na toh isme wo nhi ho rhe (the single valued fb fz is analytic in domain D if the four partial derivatives ux vx uy vy are continuous and satisfy CR eqn ) in each point D !! Isliye ye analytic nhi hai

pandey
Автор

This type of application questions are not given in my college.... 🙂🥲
Thankyou sir for doing this video 🙏🏻

Pranavxyx
Автор

Sir book mai bhi yehi h wahan se rat lete kuchh sajhane k liye aaye thr

ishujoshivlogs
Автор

Continuous formulae use cheyadaniki avvada

harikaasi
Автор

Sir solution toh google se bhi uth jata hai... Aapne ek line bhi ni samjhaya hai

shubhampandey
Автор

😂phle khid smjh lo chle ho utube m pdane ko

pandey