Matplotlib Tutorial in Hindi part-13 | plt.imshow & Colorbar | ML Hands-on Python Course #01.03.13

preview_player
Показать описание

Course name: “Machine Learning – Beginner to Professional Hands-on Python Course in Hindi”

In this python matplotlib tutorial part-13, We explained real-time example,
1. how to read an image from the folder
4. how to show an image using cmap (color map) parameter
6. and more parameters, functions

……………………………………………………………………………………………………………………
Course Playlists-
Python matplotlib Tutorial in Hindi:

Machine Learning Beginner to Professional Hands-on Python Course in Hindi:

Python NumPy Tutorial in Hindi:

Python Pandas Tutorial in Hindi:

Data Cleaning Tutorial:
……………………………………………………………………………………………………………………
For more information:
Contact Us:
=========
……………………………………………………………………………………………………………………
#Matplotlibimshow #MatplotlibColorbar
#MatplotlibTutorialInHindi # PythonMatplotlib
#MachineLearningTutorialInHindi #IndianAIProduction
Рекомендации по теме
Комментарии
Автор

thank you bhai .... tu jo topic ko deep mai ja kar simple way mai samjata hai na ..vo merko bahot achha lgta hai...
.
aaur har ek new video ki starting aaur ending mai recent videos aaur topic ki jo revision leta hai na vo bhi gajab hai....
😍😍😍😍

vilasbhapkar
Автор

Thank you so much sir.. Bahutt achhe se aapne samjhaya.. Bahut paresan thi es topic ko Lake...aap Data science ke statistiks ke upar bhi video bnaiye na

AnjaliKumari-lkro
Автор

Sir ekdum jeher tutorial, maja aa gaya sir ji😘😘

codeindustries
Автор

Just finished matplotlib...it was awesome learning with

bhadreshshingadia
Автор

Bhai ekdum OP 🔥and explaination level is NEXT LEVEL. Thank you BROTHER

himanshubomble
Автор

one like is not enough for this awesome posting !!!

ramankaplish
Автор

PANDAS Done ✔️
NUMPY Done ✔️
matplotlib Done ✔️
SEABORN Done ✔️
Thanks ❤️‍🔥 from Bangladesh

dipu
Автор

Very nice n easy explanation in whole tutorial sir..im very thankful to u sir

devansheerupabheda
Автор

Thanks a lot Sir ji.
For this excellent tutorial. 🙏

naveenrawat.
Автор

This playlists was awesome
And I want to learn Scipy
So sir please make a video on Scipy library

kanha
Автор

sir aapki puri playlist dekhne ke baad me job ke liye eligible ho jaunga kya..?

CognosChronicles
Автор

Sir we are learning libraries but please recommend us which library should learn first then 2nd and so Please sir

junaidbadshah
Автор

great job sir, plese make one playlist on Tensorflow

akshayprajapati
Автор

Sir I got one a
Error list index out of range and try to solve it this problem but I can't please tell me how to handle it

codewithguruji
Автор

brother why did u used cmap string in three double quotes?? """ Accent, etc"""? i did not understand why this when u can use single "" time.

anindian
Автор

Videos are very helpful. I have one doubt. I use . It gives me the vegetation map in the remote sensing image. Can you please tell me how can i get the color labels of different vegetation map. For example say the areas in image appearing in green color contains grass.

sandeepkumarladi
Автор

What is the basically practical use of colour bar

yasharya
Автор

for i in range(len(cmap_name_list)):
cmap_name = cmap_name_list[i]
plt.figure(figsize=(16, 9))
plt.axis("off")

print(cmap_name)

plt.imshow(single_channel2_img, cmap=cmap_name)


plt.savefig(save_image_addr_name[i], orientation='portrate', facecolor= "k")
plt.show()

'Accent'

ValueError Traceback (most recent call last)
in <module>
6 print(cmap_name)
7
----> 8 plt.imshow(single_channel2_img, cmap=cmap_name)
9
10

in imshow(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, filternorm, filterrad, resample, url, data, **kwargs)
2722 filternorm=True, filterrad=4.0, resample=None, url=None,
2723 data=None, **kwargs):
-> 2724 __ret = gca().imshow(
2725 X, cmap=cmap, norm=norm, aspect=aspect,
2726 interpolation=interpolation, alpha=alpha, vmin=vmin,

in inner(ax, data, *args, **kwargs)
1445 def inner(ax, *args, data=None, **kwargs):
1446 if data is None:
-> 1447 return func(ax, *map(sanitize_sequence, args), **kwargs)
1448
1449 bound = new_sig.bind(ax, *args, **kwargs)

in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, filternorm, filterrad, resample, url, **kwargs)
5517 aspect = rcParams['image.aspect']
5518 self.set_aspect(aspect)
-> 5519 im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
5520 filternorm=filternorm, filterrad=filterrad,
5521 resample=resample, **kwargs)

in __init__(self, ax, cmap, norm, interpolation, origin, extent, filternorm, filterrad, resample, **kwargs)
900 self._extent = extent
901
--> 902 super().__init__(
903 ax,
904 cmap=cmap,

in __init__(self, ax, cmap, norm, interpolation, origin, filternorm, filterrad, resample, **kwargs)
241 ):
242 martist.Artist.__init__(self)
--> 243 cm.ScalarMappable.__init__(self, norm, cmap)
244 if origin is None:
245 origin = mpl.rcParams['image.origin']

in __init__(self, norm, cmap)
234 self.set_norm(norm) # The Normalize instance of this ScalarMappable.
235 self.cmap = None # So that the setter knows we're initializing.
--> 236 self.set_cmap(cmap) # The Colormap instance of this ScalarMappable.
237 #: The last colorbar associated with this ScalarMappable. May be None.
238 self.colorbar = None

in set_cmap(self, cmap)
403 """
404 in_init = self.cmap is None
--> 405 cmap = get_cmap(cmap)
406 self.cmap = cmap
407 if not in_init:

in get_cmap(name, lut)
202 if isinstance(name, colors.Colormap):
203 return name
--> 204 cbook._check_in_list(sorted(_cmap_registry), name=name)
205 if lut is None:
206 return _cmap_registry[name]

in _check_in_list(_values, **kwargs)
2264 for k, v in kwargs.items():
2265 if v not in values:
-> 2266 raise ValueError(
2267 "{!r} is not a valid value for {}; supported values are {}"
2268 .format(v, k, ', '.join(map(repr, values))))

ValueError: "'Accent'" is not a valid value for name; supported values are 'Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'turbo', 'turbo_r', 'twilight', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r', 'winter', 'winter_r'

srmking
Автор

Image. Shape = (288, 432, 4) what does 4 denote? In grayscale it is 1 nd in Color rgb it is 3 i guess.

piyushaneja