filmov
tv
Voltage and Current in tamil
Показать описание
What is Voltage and Current
What is Electric Current ?
An electric current is a flow of electric charge in a circuit. More specifically, the electric current is the rate of charge flow past a given point in an electric circuit. The charge can be negatively charged electrons or positive charge carriers including protons, positive ions or holes.
The basic concept of current is that it is the movement of electrons within a substance. Electrons are minute particles that exist as part of the molecular structure of materials. Sometimes these electrons are held tightly within the molecules and other times they are held loosely and they are able to move around the structure relatively freely.
One very important point to note about the electrons is that they are charged particles - they carry a negative charge. If they move then an amount of charge moves and this is called current.
It is also worth noting that the number of electrons that able to move governs the ability of a particular substance to conduct electricity. Some materials allow current to move better than others.
The motion of the free electrons is normally very haphazard - it is random - as many electrons move in one direction as in another and as a result there is no overall movement of charge.
If a force acts on the electrons to move them in a particular direction, then they will all drift in the same direction, although still in a somewhat haphazard fashion, but there is an overall movement in one direction.
The force that acts on the electrons is called and electromotive force, or EMF, and its quantity is voltage measured in volts.
To gain a little more understanding about what current is and how it acts in a conductor, it can be compared to water flow in a pipe. There are limitations to this comparison, but it serves as a very basic illustration of current and current flow.
The current can be considered to be like water flowing through a pipe. When pressure is placed on one end it forces the water to move in one direction and flow through the pipe. The amount of water flow is proportional to the pressure placed on the end. The pressure or force placed on the end can be likened to the electro-motive force.
When the pressure is applied to the pipe, or the water is allowed to flow as a result of a tap being opened, then the water flows virtually instantaneously. The same is true for the electrical current.
To gain an idea of the flow of electrons, it takes 6.24 billion, billion electrons per second to flow for a current of one ampere.
What is voltage?
Voltage is the pressure from an electrical circuit's power source that pushes charged electrons (current) through a conducting loop, enabling them to do work such as illuminating a light.
In brief, voltage = pressure, and it is measured in volts (V). The term recognizes Italian physicist Alessandro Volta (1745-1827), inventor of the voltaic pile—the forerunner of today's household battery.
In electricity's early days, voltage was known as electromotive force (emf). This is why in equations such as Ohm's Law,voltage is represented by the symbol E.
Example of voltage in a simple direct current (dc) circuit.
Thank You for watching
What is Electric Current ?
An electric current is a flow of electric charge in a circuit. More specifically, the electric current is the rate of charge flow past a given point in an electric circuit. The charge can be negatively charged electrons or positive charge carriers including protons, positive ions or holes.
The basic concept of current is that it is the movement of electrons within a substance. Electrons are minute particles that exist as part of the molecular structure of materials. Sometimes these electrons are held tightly within the molecules and other times they are held loosely and they are able to move around the structure relatively freely.
One very important point to note about the electrons is that they are charged particles - they carry a negative charge. If they move then an amount of charge moves and this is called current.
It is also worth noting that the number of electrons that able to move governs the ability of a particular substance to conduct electricity. Some materials allow current to move better than others.
The motion of the free electrons is normally very haphazard - it is random - as many electrons move in one direction as in another and as a result there is no overall movement of charge.
If a force acts on the electrons to move them in a particular direction, then they will all drift in the same direction, although still in a somewhat haphazard fashion, but there is an overall movement in one direction.
The force that acts on the electrons is called and electromotive force, or EMF, and its quantity is voltage measured in volts.
To gain a little more understanding about what current is and how it acts in a conductor, it can be compared to water flow in a pipe. There are limitations to this comparison, but it serves as a very basic illustration of current and current flow.
The current can be considered to be like water flowing through a pipe. When pressure is placed on one end it forces the water to move in one direction and flow through the pipe. The amount of water flow is proportional to the pressure placed on the end. The pressure or force placed on the end can be likened to the electro-motive force.
When the pressure is applied to the pipe, or the water is allowed to flow as a result of a tap being opened, then the water flows virtually instantaneously. The same is true for the electrical current.
To gain an idea of the flow of electrons, it takes 6.24 billion, billion electrons per second to flow for a current of one ampere.
What is voltage?
Voltage is the pressure from an electrical circuit's power source that pushes charged electrons (current) through a conducting loop, enabling them to do work such as illuminating a light.
In brief, voltage = pressure, and it is measured in volts (V). The term recognizes Italian physicist Alessandro Volta (1745-1827), inventor of the voltaic pile—the forerunner of today's household battery.
In electricity's early days, voltage was known as electromotive force (emf). This is why in equations such as Ohm's Law,voltage is represented by the symbol E.
Example of voltage in a simple direct current (dc) circuit.
Thank You for watching
Комментарии