Data Science Bootcamp Day 4: NumPy & Pandas Explained | Essential Python Libraries

preview_player
Показать описание
Learn the fundamentals of NumPy and Pandas - two essential Python libraries for data science and analysis! In this comprehensive tutorial, we cover everything from basic array operations to advanced data manipulation techniques.

**🔥 What You'll Learn:**

**NumPy Section:**
- Multi-dimensional array indexing and access
- 2D and 3D array operations and slicing
- Data types and type conversion with astype()
- Element-wise operations and broadcasting
- Built-in mathematical functions (mean, std, min, max, sum, etc.)
- Performance advantages over core Python

**Pandas Section:**
- Introduction to Series (1D labeled arrays)
- DataFrame creation and structure (2D labeled tables)
- Data input/output (CSV, JSON, databases)
- Essential operations: head(), tail(), info(), describe(), shape
- Data selection with .loc and .iloc
- Boolean filtering and .query() method
- Data manipulation and the importance of .copy()

**🎯 Perfect for:**
- Python beginners moving into data science
- Students learning data analysis
- Anyone wanting to understand NumPy and Pandas fundamentals
- Data professionals looking for a refresher

**⏰ Timestamps:**
- 00:00 NumPy Introduction & Advantages
- 01:36 Multi-dimensional Indexing & Axes
- 06:37 2D Array Slicing Techniques
- 07:35 3D Arrays & Visualization
- 18:39 NumPy Functions & Online Resources
- 20:01 Data Types in NumPy Arrays
- 24:26 Element-wise Operations & Broadcasting
- 30:18 Mathematical Functions (mean, std, etc.)
- 47:47 Introduction to Pandas
- 50:53 Pandas Series Explained
- 56:49 DataFrame Structure & Creation
- 01:04:31 Data Input/Output Operations
- 01:18:35 Data Selection & Filtering
- 01:22:42 Data Manipulation & Copying

**🔗 Resources Mentioned:**
- NumPy Documentation
- Pandas Documentation
- Practice datasets for hands-on learning

**💡 Key Takeaways:**
- NumPy provides faster, more efficient numerical computations than core Python
- Pandas builds on NumPy to offer powerful data structures for real-world data analysis
- Understanding axes, indexing, and data types is crucial for effective data manipulation
- Always use .copy() when modifying DataFrames to avoid unintended changes

Don't forget to like, subscribe, and hit the notification bell for more Python data science tutorials!

#Python #NumPy #Pandas #DataScience #Programming #Tutorial #DataAnalysis #MachineLearning
Рекомендации по теме
visit shbcf.ru