filmov
tv
Data Dashboard GUI App with Taipy Scenarios - Step by Step Python Tutorial

Показать описание
In this video, we will create a beautiful Data Science Dashboard, that predicts the future values of stocks using different algorithms. We will start by designing a dynamic Graphic User Interface with an open source Python library named Taipy. Then, we will download S&P 500 stock exchange data that stores daily information all the way from year 2010. We will then plot the historic values of each stock, and use them to calculate a prediction for the next business day. The best part is, we will perform the predictions in parallel, using Taipy's Scenario Management Backend, and 3 different algorithms: Linear Regression, K Nearest Neighbors, and Recurrent Neural Network.
By the end of this video, you will gain the following skills and knowledge:
- get comfortable with designing full stack applications with Taipy.
- understand how to arrange time series data for training and prediction.
- learn how to plot graphs with plotly.
- learn how to quickly train and predict with Scikit-learn and Tensorflow.
- and of course, learn how to design, build and reason about advanced applications from scratch.
If you'd like to learn more or contribute to Taipy, checkout their:
💻 TUTORIAL CODE 💻
----------------------------------------------------
⭐ WSL Installation Instructions (run line by line in Command Prompt):
wsl --run
⭐ Clone project GitHub repo:
⭐ Install cuDF Pandas [optional]:
⭐ Import Machine Learning Modules:
⭐ Copy Build RNN Function:
def build_RNN(n_features):
model = models.Sequential()
return model
🎥 RELATED VIDEOS 🎥
----------------------------------------------------
⭐ Anaconda for beginners:
⭐ Simple Machine Learning GUI App with Taipy and Tensorflow:
⭐ Datetime Ultimate Guide:
⭐ If Name Equals Main:
⭐ List Comprehension:
⭐ Basic Guide to Pandas:
⭐ cuDF Pandas for beginners:
⏰ Time Stamps ⏰
----------------------------------------------------
00:00 - intro
00:50 - environment setup and wireframe
GUI DESIGN - FRONT END
02:37 - images and text
03:57 - vertical group of elements (part block)
05:06 - date range selector
06:57 - horizontal group of elements (layout)
07:29 - dropdown selector
DATA LAYER
14:17 - download dataset from Kaggle
15:30 - install cuDF Pandas via GPU [optional]
18:10 - fill GUI placeholders with dataset values
TAIPY SCENARIOS - BACK END
21:08 - on change function
22:13 - add icons for dropdown elements
25:02 - basic Taipy scenarios logic (presentation)
25:44 - configure input and output data nodes
26:24 - configure task
27:28 - configure scenario
28:18 - initialize scenario orchestrator
29:12 - define function for scenario task
30:36 - write inputs, submit scenario and read outputs
41:20 - display graph with plotly
45:02 - display multiple functions in one graph
53:08 - on init function
MACHINE LEARNING
54:33 - split timeseries data into features and targets
01:00:26 - Linear Regression, KNN, RNN
🤝 Connect with me 🤝
----------------------------------------------------
🔗 Github:
🔗 X:
🔗 LinkedIn:
🔗 Blog:
🔗 Discord:
💳 Credits 💳
----------------------------------------------------
⭐ Beautiful titles, transitions, sound FX:
⭐ Icons and Graphics:
#datascience #python #pythonprogramming #pythonprojects #tutorial #machinelearning #artificialintelligence #ml #ai #financial #stockmarket #stockexchange #stockprediction #predictions #prediction #dsa #software #softwareengineer #softwaredevelopment #programming #coding #application #codingproject #programmer #programmingtutorial #pandas #fullstack #backend #frontend #sp500 #trading #stocktrading
By the end of this video, you will gain the following skills and knowledge:
- get comfortable with designing full stack applications with Taipy.
- understand how to arrange time series data for training and prediction.
- learn how to plot graphs with plotly.
- learn how to quickly train and predict with Scikit-learn and Tensorflow.
- and of course, learn how to design, build and reason about advanced applications from scratch.
If you'd like to learn more or contribute to Taipy, checkout their:
💻 TUTORIAL CODE 💻
----------------------------------------------------
⭐ WSL Installation Instructions (run line by line in Command Prompt):
wsl --run
⭐ Clone project GitHub repo:
⭐ Install cuDF Pandas [optional]:
⭐ Import Machine Learning Modules:
⭐ Copy Build RNN Function:
def build_RNN(n_features):
model = models.Sequential()
return model
🎥 RELATED VIDEOS 🎥
----------------------------------------------------
⭐ Anaconda for beginners:
⭐ Simple Machine Learning GUI App with Taipy and Tensorflow:
⭐ Datetime Ultimate Guide:
⭐ If Name Equals Main:
⭐ List Comprehension:
⭐ Basic Guide to Pandas:
⭐ cuDF Pandas for beginners:
⏰ Time Stamps ⏰
----------------------------------------------------
00:00 - intro
00:50 - environment setup and wireframe
GUI DESIGN - FRONT END
02:37 - images and text
03:57 - vertical group of elements (part block)
05:06 - date range selector
06:57 - horizontal group of elements (layout)
07:29 - dropdown selector
DATA LAYER
14:17 - download dataset from Kaggle
15:30 - install cuDF Pandas via GPU [optional]
18:10 - fill GUI placeholders with dataset values
TAIPY SCENARIOS - BACK END
21:08 - on change function
22:13 - add icons for dropdown elements
25:02 - basic Taipy scenarios logic (presentation)
25:44 - configure input and output data nodes
26:24 - configure task
27:28 - configure scenario
28:18 - initialize scenario orchestrator
29:12 - define function for scenario task
30:36 - write inputs, submit scenario and read outputs
41:20 - display graph with plotly
45:02 - display multiple functions in one graph
53:08 - on init function
MACHINE LEARNING
54:33 - split timeseries data into features and targets
01:00:26 - Linear Regression, KNN, RNN
🤝 Connect with me 🤝
----------------------------------------------------
🔗 Github:
🔗 X:
🔗 LinkedIn:
🔗 Blog:
🔗 Discord:
💳 Credits 💳
----------------------------------------------------
⭐ Beautiful titles, transitions, sound FX:
⭐ Icons and Graphics:
#datascience #python #pythonprogramming #pythonprojects #tutorial #machinelearning #artificialintelligence #ml #ai #financial #stockmarket #stockexchange #stockprediction #predictions #prediction #dsa #software #softwareengineer #softwaredevelopment #programming #coding #application #codingproject #programmer #programmingtutorial #pandas #fullstack #backend #frontend #sp500 #trading #stocktrading
Комментарии