filmov
tv
Introduction to analytic number theory 10: The functional equation for zeta function
![preview_player](https://i.ytimg.com/vi/hkCjKIBIK1w/maxresdefault.jpg)
Показать описание
Lecture 10 of my graduate course, Introduction to analytic number theory, at the University of Western Ontario, May-June 2023. Analytic continuation and functional equation of the Riemann zeta function (Riemann's second proof): Mellin transform, theta function and modularity.
00:30 analytic continuation of Gamma function
10:00 poles and residues of Gamma function
37:00 completed zeta function
38:27 theta function, zeta via theta, Mellin transform
47:05 modularity of theta
49:00 analytic continuation and functional equation of zeta functions
00:30 analytic continuation of Gamma function
10:00 poles and residues of Gamma function
37:00 completed zeta function
38:27 theta function, zeta via theta, Mellin transform
47:05 modularity of theta
49:00 analytic continuation and functional equation of zeta functions
Analytic Number Theory: Introduction to analytic number theory - 4th Year Student Lecture
Analytic Number Theory
Analytic number theory: introduction
Andrew Granville - 1/3 The pretentious approach to analytic number theory
Analytic Number Theory: Dirichlet series - Oxford Mathematics 4th Year Student Lecture
Analytic number theory
Introduction to Analytic Number Theory
Introduction to analytic number theory 8
Intro to Analytic Number Theory and PNT!
Introduction to analytic number theory 17: Class number formula examples
Introduction to analytic number theory 4: Dirichlet series
Introduction to Basic Analytic Number Theory by Aatman Supkar
Analytic Number Theory with Sage - Kamalakshya Mehatab
Introduction to analytic number theory 13: Riemann-von Mangoldt explicit formula
Introduction to analytic number theory 12: special values of zeta function
Introduction to analytic number theory 10: The functional equation for zeta function
Algebraic number theory - an illustrated guide | Is 5 a prime number?
Damaris Schindler: Interactions of analytic number theory and geometry - lecture 1
Introduction to analytic number theory 7
Introduction to analytic number theory 1: Euler, zeta function, and distribution of primes.
Lecture 1, Analytic Number Theory Rutgers Math 572 Prof. Kontorovich, 1/21/2022
Introduction to analytic number theory 14: A quick summary of Riemann's 1859 paper
Introduction to analytic number theory 19: Functional equation for Dirichlet L-functions
Analytic Number Theory Lecture 01
Комментарии