filmov
tv
Let `veca=2hati+hatj-2hatk` and `vecb=hati+hatj`. If `vecc` is a vector such that `veca.v
Показать описание
Doubtnut
Рекомендации по теме
0:01:38
Let `veca=2hati+hatj-2hatk` and `vecb=hati+hatj`. If `vecc` is a vector such that `veca.v
0:01:50
Let `veca=2hati+hatj-2hatk` and `vecb=hati+hatj`. If `vecc` is a vector such that `veca.vec=
0:04:04
Let `veca=2hati+hatj-2hatk` and `vecb=hati+hatj` If `c` is a vector such that `veca.vecc=|vecc
0:01:42
Let `veca =2hati +hatj -2hatk and vecb = hati +hatj . ' Let ' vecc` be vector such that
0:04:29
Let `veca=2hati+hatj-2hatk and vecb=hati+hatj. If vecc` is a vector such that `veca.vecc=|vecc|,|vec
0:03:04
Let `veca=2hati+hatj-2hatk`, `vecb=hati+hatj`. If `vecc` is a vector such that `veca.vecc=|vec
0:04:47
Let `veca=2hati+hatj-2hatk`, `vecb=hati+hatj`. If `vecc` is a vector such that `veca.vecc=|vec
0:15:36
Let `veca=hati-hatj+hatk, vecb=2hati+hatj` and `vecc=3hatj-2hatk,vecx,
0:06:43
The vectors `a=2hati+hatj-2hatk, b=hati+hatj`. If c is a vector such that `a.c=|c|
0:09:44
`vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hat
0:01:53
Find a unit vector perpendicular to both the vectors `2hati+3hatj+hatk) and (hati-hatj+2hatk)`.
0:04:47
Let `L_(1)` and `L_(2)` denote the lines `vecr=veci+lamda(-hati+2hatj+2hatk)
0:00:48
What vector must be added to the two vectors 𝑖 ̂+ 𝑗 ̂−2𝑘 ̂ and 3𝑖 ̂+2𝑗 ̂+4𝑘 ̂,...
0:02:17
The vector `vecB=5hati+2hatj-Shatk` is perpendicular to the vector `vecA=3hati+hatj+2hatk` if S=
0:02:39
What vector must be added to the two vectors hati-2hatj+2hatk and 2hati+hatj-hatk, so that the r...
0:06:36
The vectors `veca=3hati+xhatj-hatk and vecb=2hati+hatj+hatk` are mutually perpedicular.
0:04:00
Let `vecr=veca+lamdavecl and vecr=vecb+mu vecm` be two lines in space where `veca= 5hati+hatj
0:02:49
The vector (s) equally inclined to the vectors `hati-hatj+hatk and hati+hatj-hatk` in the plane
0:04:01
VECTORS DTS 02 Q4 Two vectors are given by à =î + 2} + 2k and B = 3î +6ĵ + 2k. Another vector C
0:03:02
If vector ` vecP=a hati + a hatj +3hatk and vecQ=a hati -2 hatj -hatk ` are perpendicular
0:15:03
Let `L_(1)` and `L_(2)` denote the lines `vecr=veci+lamda(-hati+2hatj+2hatk),lamdainR`
0:02:13
If A=5 units,B= 6 units and `|vec(A)xxvec(B)|= 15 units`, then what is the angle between `vec(A)` an
0:02:18
The direction cosines of a vector `hati+hatj+sqrt(2) hatk` are:-
0:01:47
If `|vecV_(1)+vecV_(2)|=|vecV_(1)-vecV_(2)|` and `V_(2)` is finite, then