#07 Laplace's Equation in Two Dimensions | Two dimensional heat flow equation | 2 D heat equation

preview_player
Показать описание
Thanks for watching
In this video we are discussed basic concept laplace equation in two dimensions*. this video helpful to CSIR NET | GATE | IIT JAM | TIFR students. this also helpful to B.Sc. and M.Sc. students. #ammathstutorials #laplaceequation2D #gbtutorials #csirnet_mathematics #gate_mathematics #iitjam_mathematics #abstractalgebra #abeliangroup #nonisomorphicabeliangroup
Follows My Social Network:
1.My web Page (for pdf notes)
2. Facebook Page
3.Twitter
4.Whatsapp channel
TWO DIMENSIONAL HEAT FLOW EQUATION IN HINDI
Laplace's Equation in Two Dimensions in Hindi
heat equation in hindi,
two dimensional heat equation in Hindi
suitable solution of two dimensional heat equation
most suitable solution of heat flow equation
two dimensional heat flow equation in hindi
solution of heat equation by separation of variables
solution of heat flow equation
Solution of two dimensional Heat flow equation in hindi
two dimensional heat equation
most suitable solution of heat equation
most suitable solution of two dimensional heat flow equation
trick to find solution of heat equation
separation of variables method of heat equation
separation of variables method of two dimensional heat equation
separation of variables method of heat flow equation
separation of variables method of two dimensional heat flow equation
Laplace's Equation in Two Dimensions in Hindi
suitable solution of Laplace's Equation in Two Dimensions
most suitable solution of Laplace's Equation in Two Dimensions

solution of Laplace's Equation in Two Dimensions by separation of variables
two dimensional heat equation
most suitable solution of Laplace's Equation in Two Dimensions
trick to find solution of Laplace's Equation in Two Dimensions
separation of variables method of Laplace's Equation
separation of variables method of Laplace's Equation

#ammathstutorials #partialdifferentialequation #onedimensionalheatequation
Рекомендации по теме
Комментарии
Автор

Sir, 13:20 par (c1e^λx+c2^e-λx) vala part agli equation me sinhλx aur coshλx me kaise aa gaya.
sin hx = (e^x-e^-x)/2 hota hai so yahan pe aise kaise aa gaya.

anubhavchauhan
Автор

Laplace 2 dimensions in pdes sa related questions k vedios snd kr dayyyy.
In ms mathematics level

uzmaali
Автор

Sir kmaal kr diya apne jo don in. Smjh nhi paya apne 10 mnt m smja diya too good

kidslearning
Автор

sir, nice video but it will be very useful if the handwriting is neat. so that students can use the video as notes while quick revision

nagulaneetigna
Автор

Sir kindly provide M.Sc(Maths) previous material, because we are having exams in December. I must want to say that your way or method of teaching and presentation of material is so good. We need more material regarding msc maths from you. Kindly provide. I am having exams in December and even so many students are having exams so please provide the important lectures for ADVANCE ALGEBRA, DIFFERENTIAL GEOMETRY AND TENSORS, MECHANICS ETC.

SonamGupta-wmbu
Автор

Sir ji very nice teaching sir ek video two dimensional wave equation par bhi banaye 🙏 please sir ji

sapnabaghela
Автор

If x and y are not in infinity then how we will find most situtable solution

sonuvashisth
Автор

I don't know but o realy find this leacture realy small and easy thank you so much for saving my time ❤️

tusharkoundal
Автор

Great sir you clear my concept great 👍👍work

deepakoraonrn.-
Автор

Thank you so much sir 🙏🙏🙏 you are genius, you have cleared my concept.. once again thank you so much🥺🥺🥺

apandey
Автор

I don't konw how to define the boundary conditions ?

aminanaima
Автор

TIP: watch in 1.50x
thank me later ;)

saisrikar