nested square roots

preview_player
Показать описание
What is the value of sqrt(1+sqrt(1+sqrt(1+...)))? Watch this video to find out!

Рекомендации по теме
Комментарии
Автор

Answer is really golden
just like the question .

sciencescience
Автор

Golden coincidence of Dr Weselcouch and Dr P posting together !

nikhilnagaria
Автор

Wow!! It's the golden answer ❤
The golden equation 😍🤗

jimmykitty
Автор

Why do you replace the part after the first "+" with x? Couldn't you also replace the part after the 2nd, 3rd or basically after any other "+"?
Oh, I just checked and apparently it does not change the result.

renamed
Автор

The answer is equal to the Golden Ratio = 1.6180339

MOHAMMADFAWAZBADEASAIDAL-F-pg
Автор

Is the nested square root sqrt(1+sqrt(2+sqrt(3+... and so on a transcendental number?

guill
Автор

Lovely cello! J.S.Bach? Sounds like that to me!

thomasborgsmidt
Автор

I personally don't like #shorts. Sure, it's somewhat interesting that some complicated expressions can be evaluated in less than a minute, but all these videos feel hectic, or they could be made better by adding a few remarks here and there.

mike_the_tutor
Автор

I don’t understand the last line. Why it equals empt?

蔺美云
Автор

Why is the golden ratio involved here?

gdavis
Автор

But why replace it with X. It just doesn't feel right. Can anyone one explain.

alvkarthik
Автор

didn't see you prove convergence :P

pythoncake
Автор

На самом деле это не доказано. Мы имеем рекуррентное соотношение Xn+1=√(1+Xn), X1=1. Перейти к пределу последовательность мы можем только в том случае если данный предел существует. Следовательно надо доказать существование предела и задача будет решена. Один из способов это сделать применить теорему Веерштрасса, при этом возрастание более-менее очевидно, а ограниченность сверху можно доказать по принципу мат индукции.

kirilrotan
Автор

Don't you first need to prove that the limit of the sequence exists and is finite?

puerulus
Автор

Wow, but I wonder it should be varphi and not phi.

nikhilnagaria
Автор

Wow. What a coincidence. My today's shorts is very very similar to this.

mathevengers